Щелевой фундамент для коттеджа

Фундамент щелевой. Щелевой фундамент для дома

Популярные материалы

Today’s:

Фундамент щелевой. Щелевой фундамент для дома

Крепость и устойчивость строения напрямую зависит от качественной укладки фундамента. Есть три его типа: плитный, столбчатый и ленточный (щелевой). При планировании достаточно легкой постройки из бетона или кирпича на глинистой почве верным решением будет щелевой фундамент для дома. Этот тип фундамента относится к ленточному и имеет несколько весомых преимуществ.

Первое — это сам процесс заливки. Непосредственно в подготовленную траншею с ровными, неосыпающимися стенками заливается бетонная смесь, что позволит такой основе стать монолитной и повысить устойчивость будущего строения за счет равномерного распределения его веса по всей бетонной подошве. В зависимости от типа почвы важно тщательно все просчитать.

Для песчаных грунтов щелевой фундамент для дома невозможен по причине высокого уровня осыпания стенок траншеи. Для почвы, которая значительно меняется в объеме при замерзании (пучинистой), важно наиболее точно просчитать возможный уровень деформации перед заливкой. Иначе уже подсыхающий фундамент может дать трещины и сдвиги. А вот с плотной глинистой почвой в процессе закладки щелевого фундамента проблем не будет.

Вторая особенность такого фундамента заключается в том, что его заливка не требует особого мастерства. Выполнить ее вполне возможно самостоятельно, при этом достаточно легко и быстро. Главное, чтобы уровень дна траншеи был ниже уровня промерзания почвы, при этом выше уровня грунтовых вод. Если на дне траншеи после дождей образовались лужи, необходимо вычерпать их и подровнять стенки.

Наконец, третья особенность, если выбран щелевой фундамент для дома, заключается в его экономичности в финансовом плане. Легкость самостоятельной заливки, устойчивость наряду с более дорогими видами фундамента, высокий уровень прочности — все это делает привлекательным щелевой фундамент для дома в случае постройки легких коттеджей и одноэтажных дачных строений.

Следует также обратить внимание на последовательность заливных работ. Как уже говорилось, стенки траншеи не должны осыпаться, а дно должно быть сухим и ровным. Далее равномерно по дну насыпается слой песка, затем заливается бетонная смесь. Чтобы укрепить щелевой фундамент для дома, следует уплотнить основу. Обычно делается это вручную при помощи штыка либо с использованием виброуплотнителя. Это поможет убрать излишки воды и воздуха, щебень ляжет плотнее и ровнее, что обеспечит устойчивость фундамента и длительность его службы.

Выбор в пользу щелевого фундамента для дома позволит сэкономить на начальных земляных работах, залить основу быстро и без особых физических усилий. Крепость такого фундамента ничем не уступает более затратным видам и порадует владельца строения своей надежностью.

Расчет нагрузки на фундамент щелевой кирпич калькулятор онлайн. Информация по назначению калькулятора.

Онлайн калькулятор монолитного ленточного фундамента предназначен для расчетов размеров, опалубки, количества и диаметра арматуры и объема бетона, необходимого для обустройства данного типа фундамента. Для определения подходящего типа фундамента, обязательно обратитесь к специалистам.

Все расчеты выполняются в соответствии со СНиП 52-01-2003 «Бетонные и железобетонные конструкции», СНиП 3.03.01-87 и ГОСТ Р 52086-2003

Ленточный фундамент представляет собой монолитную замкнутую железобетонную полосу, проходящую под каждой несущей стеной строения, распределяя тем самым нагрузку по всей длине ленты. Предотвращает проседание и изменение формы постройки вследствие действия сил выпучивания почвы. Основные нагрузки сконцентрированы на углах. Является самым популярным видом среди других фундаментов при строительстве частных домов, так как имеет лучшее соотношение стоимости и необходимых характеристик.

Существует несколько видов ленточных фундаментов, такие как монолитный и сборный, мелкозагубленный и глубокозагубленный. Выбор зависит от характеристик почвы, предполагаемой нагрузки и других параметров, которые необходимо рассматривать в каждом случае индивидуально. Подходит практически для всех типов построек и может применяться при устройстве цокольных этажей и подвалов.

Проектирование фундамента необходимо осуществлять особенно тщательно, так как в случает его деформации, это отразится на всей постройке, а исправление ошибок является очень сложной и дорогостоящей процедурой.

При заполнении данных, обратите внимание на дополнительную информацию со знаком.

Далее представлен полный список выполняемых расчетов с кратким описанием каждого пункта. Вы так же можете задать свой вопрос, воспользовавшись формой справа.

Фундамент щелевой стена в грунте. Фундамент щелевой: преимущества и технология монтажа

При строительстве ленточного основания на прочных глинистых грунтах с низким залеганием грунтовых вод можно обойтись без устройства опалубки и залить бетон прямо в траншею. Такой фундамент дома называется щелевой.

Этот вид оснований очень популярен и используется при возведении домов малой этажности, строительстве хозяйственных построек и гаражей. Данная методика возведения основания позволяет значительно снизить объёмы земляных работ и сэкономить время и деньги на установке опалубки.

В итоге себестоимость строительства становится более приемлемой, а сроки монтажа уменьшаются.

Конструктивные особенности

Конструктивно щелевое основание можно сравнить с монолитным ленточным фундаментом

Конструктивно щелевое основание можно сравнить с монолитным ленточным фундаментом.

Только роль опалубочной конструкции здесь играют стенки траншеи. Такое название эти основания получили за то, что траншея в грунте очень напоминает узкую щель.

Благодаря небольшим неровностям на стенках траншеи обеспечивается более эффективное сцепление бетонной смеси с породой.

Нижняя часть щелевого основания также формируется за счёт грунта на дне канавы. Таким образом, нагрузки от строения равномерно распределяются по ленте и передаются на грунт. Закладка таких фундаментов может выполняться только на плотных глинистых грунтах, в которых можно выкопать траншею с ровными вертикальными стенками, не подверженными осыпанию.

Внимание: строительство щелевого фундамента для дома запрещено на песчаных грунтах, поскольку они плохо держат форму. В итоге осыпающая со стенок траншеи порода будет способствовать снижению несущей способности основания.

Стоит упомянуть о разновидности щелевых оснований – многощелевом фундаменте. В этом случае бетон заливается не в одну траншею, а сразу в несколько прорезанных в грунте щелей. В итоге конструкция основания выглядит, как несколько параллельно расположенных лент шириной 10-20 см. Каждая лента обязательно армируется перед заливкой бетоном.

Главные условия использования такого основания:

  • порода на участке преимущественно глинистая и плотная;
  • грунтовые воды проходят на большой глубине;
  • морозное пучение породы минимальное (на непучинистых грунтах можно использовать мелкозаглублённые конструкции, а на пучинистых породах лучше заложить основание ниже точки промерзания).

Совет: порой на одном участке находится сразу 2-3 разновидности грунта, а подземные воды могут иметь достаточно агрессивный состав. В таких условиях бетон не наберёт нужную прочность. Поэтому стоит заранее получить данные об участке строительства, заказав гидрогеологические исследования.

Преимущества и недостатки

Простота и доступность технологии позволяют выполнить монтаж своими руками без использования строительной техники

Щелевой фундамент имеет следующие достоинства:

  • Значительно снижаются объёмы земляных работ. Согласно статистическим данным время на копку траншеи сокращается в два раза.
  • Не нужно устанавливать опалубку, что сокращает расходы и экономит время. Около 60-70 % времени на монтаж стандартного ленточного фундамента экономится в случае заливки щелевого основания.
  • Благодаря такой технологии строительства можно сократить расход бетона до 6 процентов, а арматуры почти до 20 процентов.
  • Траншейную технологию разрешено использовать на ограниченных участках, где запрещено применять динамические воздействия на породу. Такая ситуация может сложиться, если поблизости находятся постройки или проложены инженерные коммуникации.
  • Простота и доступность технологии позволяют выполнить монтаж своими руками без использования строительной техники.
  • За счёт протекания бетона в щели и неровности в стенках траншеи обеспечивается дополнительное сцепление с породой и усиление окружающего грунта. Именно поэтому при расчёте такой конструкции не учитывается показатель сопротивляемости породы.

Фундамент щелевой для забора фо-3. Панели забора ПО фундамент ФО

Панели забора ПО, фундамент ФО Серия ИЖ 31-77
НаименованиеРазмеры (ДхШхВ, мм)Объем, м3Масса, тЦена за 1 ед. с НДС, руб.
Панель ПО-22500х150х30000,571,426372
Панель ПО-2м
с фартуком
2500х150х30000,671,676851
Фундамент ФО-2950х750х5500,250,631984

Железобетонный забор производится из тяжелого бетона двухсотой марки и состоит из панели и фундамента ограды. Панели забора высотой два метра применяются при строительстве на территориях промышленных предприятий. Также возможно использование данных железобетонных оград в лечебных учреждениях. На режимных объектах используют плиты забора высотой 2.4 метра. Для строительства скверов и учебных объектов Серия ИЖ 31-77 допускает применение бетонных ограждений высотой 1.2 метра.

Наше предприятие выпускает панели забора ПО-2 , являющиеся одними из самых популярных изделий в номенклатуре железобетонных оград. Забор ПО-2 имеет высоту три метра и длину два с половиной метра. Это опалубочные размеры, они относятся непосредственно к изделию. После монтажа панелей забора высота конструкции составит 2.4 метра. Железобетонный забор ПО-2 рассчитан на довольно высокие ветровые нагрузки. Части панелей, которые будут заглублены в землю, в обязательном порядке подвергаются антикоррозийной обработке. Серией ИЖ 31-77 допускается производство панелей оград из керамзитобетона, но для этого в проекте строительства должно присутствовать необходимое обоснование. С внешней стороны панели забора ПО-2 присутствует рисунок. Он выполнен в виде ребер, которые нужны для самоочистки панелей от снега, дождевых вод, оседающей грязи и пыли. Внутренняя сторона не содержит рисунка, она обращена внутрь огороженного участка. Категория требуемой поверхности плит забора должна соответствовать классу А6. Возможен вариант изготовления панели забора ПО-2м с фартуком. Фартук в данном случае будет закрывать малейшие зазоры между грунтом и железобетонным забором.

В качестве фундамента стаканного типа к забору ПО-2 мы производим фундамент забора ФО-2. Почва в местах установки фундаментов ограды тщательно трамбуется, дополнительно можно делать песчаные подушки. Фундамент ФО-2 можно полностью заглубить в грунт. В этом случае высота полученного забора будет такой же, как и высота панели ПО-2 (два с половиной метра). Если нужно увеличить высоту забора, то ФО-2 можно установить непосредственно на грунт. Забор получится высотой белее 3 метров, но именно в этом случае может потребоваться панель забора ПО-2м с фартуком, чтобы наглухо закрыть от посторонних образовавшиеся внизу забора пустоты.

Установка забора ПО-2 весьма проста и не требует особых временных затрат. Панели своими ножками вставляются в фундаменты ограды ФО-2. Часто при этом используют распорки, которые предотвращают смещение плит забора до полного затвердения бетона. Проектное положение каждой панели забора проверяют с помощью горизонтального и вертикального уровня. При складировании забора ПО-2 панели можно укладывать вертикально в кассеты, либо штабелировать горизонтально, но не белее восьми штук в штабеле.

Фундамент щелевой для забора. Очередность наливки

Разделим все работы на пять этапов, чтобы без ошибок сделать фундамент для забора:

  1. Необходимо сделать разметку по периметру фундамента: для этого вбивают колышки и натягивают веревку, обязательно фиксируют ее на углах. В местах поворота необходимо забить колышек, также отметить место для ворот и калитки.
  2. Роют траншею шириной 35-40 см и глубиной до 50 см, в местах, где будут установлены столбы, делают углубления до 90 см. Рекомендуемое расстояние между столбами 2 метра, а высота столба с учетом подземной части — не менее 2,5 метра. Устанавливаем столбы, строго вертикально фиксируем их камнями, битым кирпичом и гравием, проверяем уровнем – это важно. Засыпают дно траншеи подушкой 5 см из гравия.

Соблюдайте правила заливки фундамента под забор, чтоб в итоге получить добротное строение

  • Приступают к установке арматурного пояса из рифленой арматуры 10-15 мм, не рекомендуется использовать сварку в местах соединения, лучше пользоваться проволокой, продольная арматура должна быть рифленой, диаметром не менее 12 мм, а поперечная и вертикальная может быть гладкой и меньшего диаметра. Армирующий пояс сначала изготавливают и потом опускают в траншею, обязательно обвязать столбы — это усилит конструкцию.
  • Ставят опалубку. Для ее сборки можно использовать подручные материалы — старые доски, фанеру, шифер и так далее. Это позволит удешевить конструкцию, основная задача опалубки — обеспечение фундаменту ровной поверхности. Выставляют и расклинивают опалубку на 25-30 см над поверхностью, проверяют возможность утечки заливной смеси. Проводят тщательную проверку опалубки до начала бетонных работ. Опалубка является временным элементом, и по окончании работ должна легко разбираться.
  • Заливают бетон. Бетонируют поэтапно горизонтальными слоями и разным типом раствора. В землю заливают более грубый с гравием или щебнем, а над землей — мягкий песок и цемент. При поэтапной заливке удастся избежать пустот в бетоне. Снимают опалубку через 5 дней. В сухую погоду фундамент необходимо поливать водой во избежание трещин. К последующим работам можно приступать после полного высыхания, когда основа наберет прочность.
  • Видео монолитный железобетонный фундамент


    Щелевой фундамент

    Щелевым называют монолитный ленточный железобетонный фундамент прямоугольного сечения, особенностью которого является укладка бетона непосредственно в выкопанную траншею – “в распор” грунта . Изготавливают их обычно в связанных глинистых грунтах, в песчаных грунтах их не применяют, так как стенки траншеи в них будут осыпаться. Цоколь можно делать как единую конструкцию с фундаментом или раздельно – из кирпичной или блочной кладки ( рис. 1 а, б ). В первом случае опалубку выставляют от поверхности грунта на высоту цоколя.

    Читайте также:  Выбираем монтаж железной двери

    Щелевые фундаменты более экономичны по сравнению с традиционными, устроенными в траншеях с применением опалубки ( рис. 1в ). Поэтому они более привлекательны при строительстве малоэтажных зданий. До последнего времени применяли только конструкции, заложенные ниже расчетной глубины промерзания.
    В традиционных ленточных фундаментах нагрузка от дома на основание передается через подошву. Сопротивление грунта обратной засыпки в расчетах не учитывают. При устройстве щелевых фундаментов за счет неровности бортов траншей и плотной (с виброуплотнением или штыкованием) укладки бетона получается хорошее сцепление боковой поверхности конструкции с грунтом, который может воспринимать значительную часть нагрузки от дома. Поэтому для получения экономичных конструкций в расчетах учитывают сопротивление грунта как по их подошве, так и по боковой поверхности. Как будет показано ниже, это достижимо не во всех грунтовых условиях.
    Щелевые фундаменты, заложенные ниже глубины промерзания, рассчитывают по деформациям осадок и на устойчивость против воздействия касательных сил пучения.
    При применении мелкозаглубленных щелевых фундаментов в пучинистых грунтах помимо указанных расчетов следует выполнять расчет по допустимым деформациям пучения. Если размеры подошвы щелевых конструкций определяют по допустимому сопротивлению грунта, рассчитанному на основе физико-механических характеристик, то осадки будут в допустимых пределах и отдельного расчета не требуют.
    Так как подавляющее большинство строительных площадок представлено пучинистыми грунтами, для заглубленных щелевых фундаментов под малоэтажными домами основным является расчет на устойчивость, а для мелкозаглубленных – расчет на устойчивость и по деформациям пучения.
    Для заглубленных конструкций устойчивость обеспечивается превышением расчетной нагрузки от дома над максимальными суммарными касательными силами пучения ( рис. 2, кривая 2 ). В этом случае деформации пучения равны нулю.

    Рис. 2. Характерное изменение величины касательных сил пучения по боковой поверхности заглубленных щелевых фундаментов в сильнопучинистых грунтах в течение зимнего периода при нормативной глубине промерзания 1,4 м: 1 – удельные касательные силы пучения; 2 – суммарные касательные силы пучения; 3 – среднемесячная температура воздуха в зимний период

    Для мелкозаглубленных фундаментов деформации пучения должны быть равны нулю при промерзании грунта на глубину заложения их подошвы. Устойчивость в этом случае обеспечивается при гораздо меньших, чем у заглубленных фундаментов, суммарных силах пучения.

    Закономерности взаимодействия щелевых фундаментов с пучинистыми грунтами

    Промерзание грунта начинается с поверхности. По мере продвижения фронта промерзания в толщу грунта в пучинистых грунтах по боковой поверхности фундаментов возникают касательные силы пучения, удельные значения которых возрастают с понижением температуры воздуха и грунта ( рис. 2, кривая 1 ).
    Цементирующим составляющим в грунте является лед, величина смерзания которого с бетонной поверхностью зависит от температуры грунта. Например, в Московской области отрицательные среднемесячные температуры достигают максимума в январе ( рис. 2, кривая 3 ). В этот же период достигают своего максимального значения удельные касательные силы. В дальнейшем, при снижении среднемесячной температуры в феврале, удельные касательные силы уменьшаются, но суммарные силы еще некоторое время продолжают увеличиваться за счет увеличения глубины промерзания, а затем тоже снижаются ( рис.2, кривая 2 ).
    Если расчетные нагрузки от дома равны или превышают расчетные суммарные касательные силы пучения, то фундамент будет устойчив, а деформации пучения равны нулю. Если нагрузки от дома меньше суммарных касательных сил пучения, то фундамент будет перемещаться вместе с грунтом. При этом подошва отрывается от основания, и под ней образуется полость, которая становится причиной накопления остаточных деформаций пучения, так как в нее может попасть грунт со стен траншеи при весеннем оседании дома. Фундамент весной может не прийти в исходное положение и в том случае, если нагрузка от дома окажется меньше сил трения грунта. Это явление часто наблюдается при применении заглубленных щелевых фундаментов для малоэтажных домов, строящихся на пучинистых грунтах . Во всех случаях подвижка здания вверх свидетельствует о неустойчивости и, следовательно, о ненадежности фундамента.
    Если щелевой фундамент выполнен в виде пространственной жесткой рамы и сопротивление на изгиб поперечного сечения достаточно для сохранения надфундаментных конструкций, то при деформациях пучения повреждения кладки стен в кирпичных домах или в домах, построенных из других кладочных материалов, не происходит. Однако образуется крен всего дома, который с годами может нарастать.
    При применении мелкозаглубленных щелевых фундаментов устойчивость здания обеспечивают, выбрав соответствующую глубину заложения ( рис. 3 б ), а допустимые деформации пучения – устроив в траншее под фундаментом противопучинную подушку. В результате получают значительную экономию бетона.
    Однако следует иметь в виду, что по мере выглубления фундаментов может потребоваться увеличение ширины их опорной части. При этом цоколь можно оставить прежней ширины ( см. рис. 3 б ).
    Если грунтовые воды во время производства работ расположены выше глубины промерзания, то устроить надежное основание трамбованием противопучинной подушки не получится. Поэтому траншею следует разрабатывать глубиной на 10. 20 см выше уровня воды, а допустимые деформации пучения обеспечить за счет уширения траншеи. То есть в этом случае переходят к устройству обычных мелкозаглубленных фундаментов.

    Особенности проектирования щелевых фундаментов

    Нагрузка от дома воспринимается грунтом по боковой поверхности фундамента и под его подошвой. Если грунты основания – непучинистые, то допустимую нагрузку на фундаменты можно рассчитывать как сумму расчетных сопротивлений грунтов. Если грунты – слабопучинистые, то допустимую нагрузку на фундаменты следует принимать только по расчетному сопротивлению грунта под подошвой. Если же грунты – средне- или сильнопучинистые, то допустимую нагрузку следует принимать по расчетному сопротивлению грунта под подошвой с учетом увеличения нагрузки на фундаменты за счет негативного трения грунта, возникающего весной на их боковой поверхности.
    Это – первая особенность проектирования щелевых фундаментов, которая требует пояснений. Весной при оттаивании распученного грунта начинается процесс его консолидации (уплотнения) и оседания. За счет увеличенной шероховатости боковой поверхности происходит зависание части грунта на фундаментах. Появляется так называемое отрицательное (негативное) трение, общая методика определения которого изложена в СНиП 2.02003-85 “Свайные фундаменты”, п.п. 4.11-4.13. Общая нагрузка на фундаменты возрастает.
    Такое взаимодействие фундаментов с грунтом продолжается лишь короткое время в весенний период, но происходит оно из года в год и может стать причиной повышенных осадок фундаментов.
    Вторая особенность , которую следует учитывать при проектировании щелевых фундаментов, состоит в том, что за счет той же шероховатости боковой поверхности возрастают касательные силы пучения, которые следует учитывать при расчете фундаментов на устойчивость.
    Методика расчета ленточных фундаментов подробно изложена в статье “Устойчивость фундаментов малоэтажных домов в пучинистых грунтах” в журнале “Советы профессионалов”, №6, 2005 г., с. 21. Поэтому отметим только отличие расчетов для щелевых фундаментов.

    Рис. 3. Варианты устройства щелевых фундаментов: а – при заглублении ниже расчетной глубины промерзания; б – мелкозаглубленный; 1 – фундамент; 2 – противопучинная подушка; dw – глубина залегания уровня грунтовых вод; df – глубина промерзания УГВ – уровень грунтовых вод

    В общем случае условие устойчивости определяется из выражения:

    где γ1, γ2 – коэффициенты надежности, равные 1.1 и 0.9 соответственно;
    Qд – нормативная нагрузка от дома;
    Qf – суммарные касательные силы пучения, действующие по боковой поверхности фундаментов, определяются по формуле:

    где τн – удельные касательные силы пучения, определяются по таблице 6.10 СП 50-101-2004 “Проектирование и устройство оснований и фундаментов зданий и сооружений”, 2005 г.;
    к – коэффициент, учитывающий отношение среднемесячной температуры воздуха при промерзании грунта на глубину заложения мелкозаглубленных фундаментов или на расчетную глубину промерзания для заглубленных фундаментов к отрицательной среднемесячной максимальной температуре за зимний период, для заглубленных фундаментов к = 1;
    m – коэффициент, учитывающий ширину пазухи и вид грунта, используемого при обратной засыпке; для щелевых фундаментов m = 1;
    ω – коэффициент, учитывающий тепловой режим дома; для неотапливаемых домов ω = 2, для наружных фундаментов отапливаемых домов ω = 1, для внутренних фундаментов отапливаемых домов ω = 0;
    Sф – площадь одной стороны боковой поверхности фундамента, находящейся в грунте.

    При неровной боковой поверхности железобетонных фундаментов с выступами до 20 мм значение удельной касательной силы пучения (τн) для щелевых фундаментов следует увеличивать до 1,5 раз (СП, табл. 6.10).
    Решая выражение (1) относительно величины Qд, можно получить значения нагрузок от дома, при которых обеспечивается устойчивость заглубленных щелевых фундаментов в пучинистых грунтах и, следовательно, возможность их применения. В табл. приведены значения таких нагрузок при нормативной глубине промерзания 1,4 м.

    Отапливаемый*

    Тепловой режим домаСтепень пучинистости грунтов
    Слабо-
    пучинистый
    Средне-
    пучинистый
    Сильно-
    пучинистый
    39.051.062.0
    14.018.022.0

    * При условии, что во время строительства пучинистый грунт вокруг фундаментов будет предохранен от промерзания.

    Опыт многолетних расчетов малоэтажных домов показывает, что диапазон характерных нагрузок для всех домов составляет 2,0. 14,0 тс/м. В кирпичных двухэтажных домах нагрузки на отдельные фундаменты могут достигать значений 18,0 тс/м. Как видим, область надежного применения заглубленных щелевых фундаментов в пучинистых грунтах под малоэтажными домами существенно ограничена.

    Условия надежного применения щелевых фундаментов

    1. Вертикальные стенки траншей не должны обрушиваться вплоть до окончания укладки бетона.
    2. Уровень грунтовых вод во время производства работ должен быть ниже дна траншей. Если в результате прошедших дождей на дне траншей образовались лужи, их необходимо вычерпать. Если грунт в этих местах пришел в текучее или текучепластичное состояние, его необходимо срезать до уровня первоначального состояния.
    3. Заглубленные щелевые фундаменты применимы по устойчивости под всеми домами независимо от теплового режима дома в непучинистых грунтах, а также под кирпичными отапливаемыми домами в 2 (и выше) этажа в слабопучинистых грунтах. Во всех остальных случаях по условию надежности под малоэтажными домами в пучинистых грунтах заглубленные щелевые фундаменты не применимы. Контактный телефон 353-55-75

    © Л. Гинзбург, кандидат технических наук, журнал “Дом” №10/2006 г.

    Описание щелевого фундамента для дома

    В нарушение требований существующих СП 22.13330 индивидуальными застройщиками часто возводится щелевой фундамент, не обеспечивающий необходимый ресурс дома. Укладка смеси при бетонировании в земляную опалубку позволяет снизить бюджет. Однако недостатков у этого метода значительно больше, поэтому специалисты не рекомендуют его категорически.

    Технология фундамента щелевого

    Для сокращения бюджета/сроков строительства частные застройщики и, даже специализированные компании часто «гонят брак» по технологии:

    • разметка – три шнура для каждой стены по обноскам (боковые грани + осевая линия)
    • траншеи – ширина точно в размер ленты МЗЛФ, глубина 60 – 100 см
    • подстилающий слой – подсыпка глубиной 40 – 60 см из щебня, песка, чтобы защитить фундамент дома от усилий вспучивания
    • гидроизоляция – полиэтиленовая пленка 0,15 мм, уложенная в траншею, запущенная на боковые стенки
    • армирование – каркасы из продольных 8 – 16 мм стержней, перевязанных поперечными хомутами из гладкой арматуры 6 – 8 мм
    • опалубка – щиты для цокольной части МЗЛФ монтируются на край траншеи, распираются бруском, шпильками, подпираются наружи укосинами
    • бетонирование – фундамент дома заливается в один прием, смесь укладывается в одном направлении слоями 40 – 60 см, уплотняется наконечником глубинного вибратора

    Внимание: Адекватных рекомендаций, как построить щелевой фундамент дома самостоятельно, не существует. Изготовить узкие траншеи глубиной от 40 см с идеально вертикальными стенками можно лишь в глине, в крайнем случае – суглинке. Супесь будет осыпаться, потребуется расширение траншей кверху, что резко повысит расход бетона при укладке в земляную опалубку.

    С другой стороны силы вспучивания максимальны как раз в почвах с максимальным процентом глины. Заглубить узкую траншею ниже отметки промерзания нереально:

    • минимальная ширина ковша экскаватора составляет 60 см
    • вручную грунт невозможно выкинуть из траншеи меньшей ширины уже с глубины 1 м

    Поэтому щелевые фундаменты, отливаемые в земляную опалубку, чаще делают малозаглубленными. Основные нюансы методики рассмотрены ниже.

    Недостатки метода

    При соблюдении требований СП на этапе котлована фундамент защищается от влаги дренажной системой. При технологии щелевого фундамента уже на этом этапе начинаются нарушения:

    • строго соблюдается геометрия профиля для снижения расхода бетона
    • грунт по умолчанию пучинистый, так как борта траншей не осыпаются только в суглинке/глине
    • укладка дренов под ж/б конструкции запрещена, так как они раздавят гофротрубы либо изменят их сечение

    В результате влага от почв с высоким процентом глины не отводится, вспучивание нарушает геометрию дома:

    • касательные усилия от вспучивания приложены к боковым граням МЗЛФ, которые имеют максимальное сцепление с почвой, так как залиты без опалубки
    • силы пучения всегда неравномерны на отдельных участках
    • в результате фундамент приподнимается не горизонтально, а задирается какой то из его углов
    • в полость под подошвой сбоку насыпается грунт, мешающий возвращению фундамента в исходное положение при весеннем оттаивании
    • процедура повторяется ежегодно, пока перекосы не поломают/порвут МЗЛФ, приведут к образованию трещин в стенах, разрушению кровли, стропильной системы

    Внимание: Щелевой фундамент запрещен при высоком уровне УГВ. Если траншеи отрываются в размер фундаментной ленты, откачивать воду в момент бетонирования невозможно.

    Гидроизоляция

    При бетонировании в земляную опалубку отсутствует доступ к наружным граням ленты. Чтобы гидроизолировать фундамент дома, применяется уложенная в траншею пленка. Качество защиты железобетона от влаги снижается многократно:

    • арматурные каркасы рвут, прокалывают пленку
    • даже при использовании 2 слоев наплавляемого гидростеклоизола поверх 2 слоев битумной мастики, праймера ресурс гидроизоляции не превышает 80 лет
    • одинарная пленка может прослужить 10 лет максимум, после чего, потребуется дорогостоящий ремонт

    Внимание: Единственным плюсом подобной конструкции является снижение выдергивающих нагрузок. Грунт скользит по пленке, но может разрушить ее на неровных участках, которых без щитовой опалубки в ленте МЗЛФ очень много.

    Утепление

    Комплексная теплоизоляция практически решает проблему вспучивания. Вертикальный слой состоит из листов пенополистирола ЭППС на наружных гранях фундамента. Горизонтальный укладывается под отмостку, после чего, утеплитель сохраняет геотермальное тепло недр, исключая промерзание почв, прилежащих к железобетонным конструкциям.

    При изготовлении щелевого фундамента вертикальный слой теплоизоляции можно заложить непосредственно в земляную опалубку. Для этого достаточно прибить ЭППС гвоздями к грунту боковых стенок, предварительно увеличив толщину на 5 – 10 см в зависимости от слоя экструдера.

    Внимание: Для утепления отмостки придется рыть траншею рядом с МЗЛФ после набора прочности бетоном. То есть, застройщик увеличивает объем земляных работ изначально ради сомнительного экономического эффекта.

    Дренаж

    Основными требованиями СП 32.13330 по обустройству дренажной системы являются:

    • уклон дренов в единой плоскости 4 – 7 градусов для обеспечения самотека
    • смотровые колодцы через 4 м на прямых участках, в углах обязательно
    • гофрированная перфорированная щелями либо гладкая с отверстиями труба в качестве дренов между колодцами
    • прокладка дренажной канализации снаружи подошвы фундамента на одной с ней высоте

    Внимание: Глинистые почвы способны вспучиваться даже летом при обильном насыщении влагой. Поэтому среди мероприятий по снижению влияния морозного пучения на ресурс фундамента дренаж стоит на первом месте.

    Если бетонировать щелевой фундамент в земляную опалубку, то позже все равно придется оголять фундамент для укладки дренов, монтажа колодцев. Двойная работа в принципе бессмысленна, поэтому разумнее строить МЗЛФ либо заглубленную ленту по классической технологии с заливкой в щитовую опалубку от самой подошвы.

    Например, при разработке траншей по размеру ширины ленты в обязательном порядке нарушается технология подбетонки. Стяжка толщиной 5 – 10 см из тощего В7,5 бетона должна быть минимум вдвое шире ленты. Она надежно защищает подошвенную гидроизоляцию от проколов камешками подстилающего слоя, позволяет снизить защитный слой бетона для нижнего пояса арматуры.

    При бетонировании в земляную опалубку в 90% случаев невозможно выдержать требуемые 4 – 7 см защитного слоя по бокам, снизу. Этому препятствует незакрепленная в траншее пленка.

    Обратная засыпка

    Отсутствие нерудного материала в пазухах траншей приводит к вертикальным перемещениям МЗЛФ:

    • зимой лента приподнимается выдергивающими усилиями от вспучивания грунта
    • весной садится на место, если полости не заполнились осыпавшейся землей

    Причем процедура повторяется ежегодно, вес дома должен быть больше сил трения между лентой, грунтом. В противном случае фундамент не сможет осесть весной, крены приведут к постепенному разрушению от внутренних напряжений.

    Консервация на зиму

    В силу вышеуказанных причин щелевой фундамент нельзя оставлять в зиму. Возвращение дома в исходно положение после оттаивания грунтов весной обусловлено исключительно сборными нагрузками от веса здания, мебели, жильцов. Согласно данным таблиц СП устойчивость заглубленного ленточного фундамента можно обеспечить нагрузками:

    • для неотапливаемого жилища, дачного дома периодической эксплуатации – 62 т/м (сильнопучинистый грунт), 51 т/м (суглинок), 39 т/м (супесь)
    • для отапливаемого коттеджа – 22 т/м (глина), 18 т/м (среднепучинистая почва), 14 т/м (супесь)

    Внимание: Реальные нагрузки в малоэтажном строительстве редко превышают 4 – 12 т/с для фахверка, СИП-панелей, «каркасника», сруба или 18 – 20 т/с для двухэтажных кирпичных домов с мансардой. Поэтому гарантированная эксплуатационная надежность щелевых фундаментов для малоэтажных зданий на пучинистых грунтах отсутствует.

    Таким образом, если щелевой фундамент остался в зиму, пятно застройки придется утеплить полностью. Для этого применяются листы пенополистирола, минвата, укрытая пленками, деревянными щитами, солома, опилки, прочие материалы. В противном случае застройщик рискует получить весной перекошенную конструкцию, на которой неизвестно как строить коробку.

    Несмотря на возможность снижения бюджета строительства, щелевой фундамент не позволяет защитить конструкции от вспучивания, проникновения влаги. Это резко снижает ресурс коттеджа, затраты на ремонт могут приблизиться к смете строительства. Поэтому специалисты не рекомендуют эту технологию для самостоятельного изготовления.

    Особенности устройства щелевых фундаментов

    Строительство дома всегда начинается с устройства фундаментной основы. От того, насколько качественной она выйдет, будет зависеть надежность всей постройки. Для невысоких домов используют несколько типов фундамента. Наиболее «популярными» среди них считаются плитный и ленточный щелевой.

    Что собой представляет щелевое основание дома? Так называется цельный ленточный фундамент из железобетона, имеющий в сечении прямоугольник. Его особой характерностью является заливка бетонной смеси прямо в приготовленную траншею.

    Возводят такие фундаментные основания, как правило, там, где стройка идет на глинистых грунтах. В рыхлых и песчаных грунтах их не используют, так как песчаные траншеи не будут строго выдерживать стены, грунт будет осыпаться.

    Есть еще многощелевые фундаменты. Такие фундаменты бывают в виде тонких стен, толщина которых 10-20 см. Эти стенки устраиваются прорезкой грунта и заполнением щелей бетоном с армированным укреплением. Таких стенок может быть несколько.

    Преимущества

    Такие типы оснований экономичнее в сравнении с обычными фундаментами, возводимыми с опалубкой. Этим фактором обусловлена их популярность у частных застройщиков при строительстве невысоких зданий своими руками. Необязательность возведения опалубки по всей высоте заливки позволяет сэкономить на материалах и времени, необходимого на ее установку.

    Кроме того, опорой здесь служит не только фундаент, но и его стенки. Ведь при закладке бетона он заливается во все щели траншеи и искривления в грунте, тем самым уплотняя его.

    В щелевых фундаментах, благодаря шершавости поверхности стен траншей и сплошной заливке бетоном, происходит отличное сцепление. Поэтому, чтобы получить экономичный вариант, в расчетах не устанавливают показатель сопротивляемости грунта.

    Ранее при возведении невысоких домов строили лишь такие щелевые фундаменты, которые имели линию закладки ниже границы промерзания почвы, т.к. в такому случае нагрузка передается через низ основы. Коэффициент сопротивляемости почвы здесь в расчет не берется. И это тоже дает значительную экономию.

    Но следует помнить, что при заливке бетона в сухую траншею часть влаги уходит в грунт, что может снизить его качество. По этой причине для такого основания марку бетона выбирают выше проектной и возводят фундамент в дождливые дни, когда земля влажная.

    Взаимодействие с нестандартными грунтами

    К укрепляющей составляющей грунта относится лед. Его соединение с бетоном зависит от максимальной температуры промерзания. К примеру, в средней полосе России температуры замерзшей почвы опускаются до предельных показателей в январские дни. В январе же достигают максимума удельные касательные силы морозного пучения.

    Если рассчитанная суммарная нагрузка от здания равна или выше суммы касательных сил пучения, постройка будет стоять устойчиво, а деформирования от пучения будут нулевыми. В противном случае основание будет «плыть» вместе с почвой.

    При этом подошва строения оторвется от фундамента и под ней появится полое пространство. Эта полость станет причиной деформирования и проседания здания весной, когда замерзшая земля начнет таять.

    Весной фундаментное основание может не вернуться в то положение, в котором оно было до замораживания грунта, даже тогда, когда нагрузка от здания станет меньше расчетных сил трения между основанием и грунтом.

    Так нередко происходит, когда применяют заглубленные щелевые фундаменты для невысоких домов, строящихся на пучинистой почве. Происходит подвижка строения, что сигнализирует о ненадежном фундаменте.

    Если щелевой фундамент для дома возведен в форме жесткой рамы, а сопротивление поперечного сечения на изгиб достаточно для сохранения конструкций, построенных сверху, то при пучении повреждений стен не происходит. Но может образоваться крен всего строения, нарастающий со временем.

    Нюансы укладки фундамента

    До конца процесса укладки бетона вертикальные стены фундамента должны быть целостными. Дно траншеи должно быть сухим. После сильного дождя оставшуюся на дне траншей воду перед началом работ нужно откачать.

    Основным условием, которое требует гидроизоляции щелевого типа фундамента, является то, что уровень траншеи должен располагаться выше границы грунтовых вод. А вот относительно уровня промерзания грунта, условие должно быть обратным — фундамент должен быть уложен ниже его.

    При расположении линии грунтовых вод ниже фундамента на 0,5-1,5 м, гидроизоляция цоколя считается достаточной.

    Технология монтажа

    Проведем расчет на примере реального фундамента периметром 43 метра. Дом строится на грунте, имеющем небольшой наклон, а потому высота фундамента над землей будет разниться. Снимается плодородный слой. Далее он будет использоваться для того, чтобы выровнять участок.

    Роется траншея 40 см в ширину и 90 см в глубину.

    Нижняя часть вырытой траншеи расширяется до 70 см. Это расширение будет опорной частью.

    Насыпаем слой щебня и тщательно трамбуем. После этого подготавливаем пояс из 10 прутьев арматуры и заливаем основание бетоном М100 на высоту 20 см.

    Затем готовим пояс арматуры под ленточный фундамент своими руками. Для этого арматура вяжется в трёх плоскостях, то есть 6 рядов по 2 прута в каждом. Готовим опалубку из обрезных досок толщиной 2,5 см, укрепляется распорками и отсыпается землей.

    Стоимость материалов в таком случае рассчитывается по следующему списку:

    • арматура 10 прутов: всего 600 м;
    • бетон М 100 – 6 м 3 ;
    • бетон М 200 – 16 м 3 ;
    • диски, проволока, плёнка, гвозди;
    • щебенка;
    • доски;
    • доставка материалов.

    Гидроизоляция стен в щелевом фундаменте проведена быть не может, а потому в бетон необходимо ввести специальные добавки. Они содержат вещества, которые образуют в бетоне кристаллы.

    Такой бетон не пропустит воду даже при сильном наводнении. Действуют эти добавки все время существования фундамента. Любая другая гидроизоляция столько лет не прослужит. Например, оклеечная или обмазочная гидроизоляция может прослужить максимум десяток лет.

    Описанная технология возведения фундамента не сложна и для нее не требуется особых знаний.

    Видео по теме

    Когда применим щелевой фундамент

    Если бригада, приглашённая вами для изготовления фундамента, предлагает отлить монолитную железобетонную ленту прямо в грунте, будьте внимательны. Для них она проще в изготовлении, а для вас может быть просто неприемлемой. Специалист рассказывает об особенностях применения такой конструкции.

    Щелевым называют монолитный ленточный железобетонный фундамент прямоугольного сечения, при изготовлении которого бетон укладывают непосредственно в выкопанную траншею – «в распор» грунта. Делают их обычно в связанных глинистых грунтах, в песчаных грунтах их не применяют, так как стенки траншеи в них будут осыпаться.

    Цоколь можно делать как единую конструкцию с фундаментом или раздельно – в виде кирпичной или блочной кладки (рис. 1а, б). В первом случае опалубку выставляют от поверхности грунта на высоту цоколя.

    Щелевые фундаменты более экономичны по сравнению с традиционными, устроенными в траншеях с применением опалубки (рис. 1в). Поэтому они более привлекательны при строительстве малоэтажных зданий.

    Особенности щелевых фундаментов

    В традиционных ленточных фундаментах нагрузка от дома на основание передаётся через подошву. Сопротивление грунта обратной засыпки в расчётах не учитывают.

    При устройстве щелевых фундаментов за счёт неровности бортов траншей и плотной (с виброуплотнением или штыкованием) укладки бетона получается хорошее сцепление боковой поверхности конструкции с грунтом, который может воспринимать значительную часть нагрузки от дома. Поэтому для получения экономичных конструкций в расчётах учитывают сопротивление грунта как по их подошве, так и по боковой поверхности. Как будет показано ниже, это достижимо не во всех грунтовых условиях.

    Щелевые фундаменты, заложенные ниже глубины промерзания, рассчитывают по деформациям осадок и на устойчивость против воздействия касательных сил пучения. Для мелко-заглублённых щелевых фундаментов в пучинистых грунтах помимо указанных расчётов следует выполнять расчёт по допустимым деформациям пучения. Если площадь подошвы щелевых конструкций определяют по допустимому сопротивлению грунта, рассчитанному на основе его физико-механических характеристик, то осадки будут в допустимых пределах и отдельного расчёта не требуют.

    Так как подавляющее большинство строительных площадок представлено пучинистыми грунтами, для заглублённых щелевых фундаментов под малоэтажными домами основным является расчёт на устойчивость, а для мелкозаглублённых – расчёт и на устойчивость, и по деформациям пучения.

    Для заглублённых конструкций устойчивость обеспечивают превышением расчётной нагрузки от дома над максимальными суммарными касательными силами пучения (рис. 2, кривая 2). В этом случае деформации пучения равны нулю.

    Для мелкозаглублённых фундаментов деформации пучения должны быть равны нулю при промерзании грунта на глубину заложения их подошвы. Устойчивость в этом случае обеспечивается при гораздо меньших, чем у заглублённых фундаментов, суммарных силах пучения.

    Щелевые фундаменты в пучинистых грунтах

    Промерзание грунта начинается с поверхности. По мере продвижения фронта промерзания в толщу пучинистого грунта по боковой поверхности фундаментов возникают касательные силы пучения, возрастающие с понижением температуры воздуха и грунта (рис. 2, кривая 1).

    Цементирующей составляющей в грунте является лёд. Смерзание его с бетонной поверхностью зависит от температуры грунта. Например, в Московской области отрицательные среднемесячные температуры достигают максимума в январе (рис. 2, кривая 3). В этот же период достигают своего максимального значения удельные касательные силы. В дальнейшем, при снижении среднемесячной температуры в феврале удельные касательные силы уменьшаются, но суммарные силы ещё некоторое время продолжают увеличиваться за счёт увеличения глубины промерзания, а затем тоже снижаются (рис. 2, кривая 2).

    ЕСЛИ НАГРУЗКИ ОТ ДОМА РАВНЫ ИЛИ ПРЕВЫШАЮТ РАСЧЁТНЫЕ СУММАРНЫЕ КАСАТЕЛЬНЫЕ СИЛЫ ПУЧЕНИЯ, ТО ФУНДАМЕНТ БУДЕТ УСТОЙЧИВ, А ДЕФОРМАЦИИ ПУЧЕНИЯ РАВНЫ НУЛЮ.

    Если нагрузки от дома меньше суммарных касательных сил пучения, то фундамент будет перемещаться вместе с грунтом. При этом подошва отрывается от основания, и под ней образуется полость, куда может попасть грунт со стен траншеи при весеннем оседании дома. Это становится причиной накопления остаточных деформаций пучения.

    Весной фундамент может не прийти в исходное положение и в том случае, если нагрузка от дома окажется меньше сил трения грунта. Это явление часто наблюдается при применении заглублённых щелевых фундаментов для малоэтажных домов, строящихся на пучинистых грунтах.

    Подвижка здания вверх свидетельствует о неустойчивости и, следовательно, о ненадёжности фундамента.

    Если щелевой фундамент выполнен в виде пространственной жёсткой рамы и сопротивление на изгиб поперечного сечения достаточно для сохранения надфундаментных конструкций, то при деформациях пучения не повреждается кладка стен в домах из кирпича или других кладочных материалов. Однако образуется крен всего дома, который с годами может нарастать.

    При применении мелкозаглублённых щелевых фундаментов устойчивость здания обеспечивают, выбрав соответствующую глубину заложения (рис. 36), а допустимые деформации пучения – устроив в траншее под фундаментом противопучинную подушку.

    В результате получают ещё и значительную экономию бетона.

    Однако следует иметь в виду, что по мере выглубления фундаментов может потребоваться увеличение ширины их опорной части. При этом цоколь можно оставить прежней ширины.

    Если грунтовые воды во время работ расположены выше глубины промерзания, то устроить надёжное основание трамбованием противопучинной подушки не получится. Поэтому траншею следует разрабатывать глубиной на 10-20 см выше уровня воды, а допустимые деформации пучения обеспечить за счёт уширения траншеи. То есть в этом случае переходят к устройству обычных мелкозаглублённых фундаментов.

    Особенности проектирования щелевых фундаментов

    Нагрузка от дома воспринимается грунтом как по боковой поверхности фундамента, так и под его подошвой. Если грунты основания непучинистые, то допустимую нагрузку на фундаменты можно рассчитывать как сумму расчётных сопротивлений грунтов. Если грунты слабопучинистые, то допустимую нагрузку на фундаменты следует принимать только по расчётному сопротивлению грунта под подошвой. Если же грунты средне- или сильно-пучинистые, то допустимую нагрузку следует принимать по расчётному сопротивлению грунта под подошвой с учётом увеличения нагрузки на фундаменты за счёт негативного трения грунта, возникающего весной на их боковой поверхности.

    Это – первая особенность проектирования щелевых фундаментов, требующая пояснений. Весной при опаивании распученного грунта начинается процесс его консолидации (уплотнения) и оседания. За счёт увеличенной шероховатости боковой поверхности происходит зависание части грунта на фундаментах. Появляется так называемое отрицательное (негативное) трение. Общая нагрузка на фундаменты возрастает.

    Такое взаимодействие фундаментов с грунтом продолжается лишь короткое время весной, но происходит оно из года в год и может стать причиной повышенных осадок фундаментов.

    Вторая особенность, которую следует учитывать при проектировании щелевых фундаментов, состоит в том, что за счёт той же шероховатости боковой поверхности возрастают касательные силы пучения, которые следует учитывать при расчёте фундаментов на устойчивость.

    Не будем касаться особенности расчётов. Важно, что мы можем получить значения нагрузок от дома, при которых обеспечивается устойчивость заглублённых щелевых фундаментов в пучинистых грунтах и, следовательно, возможность их применения. Ниже в таблице приведены значения таких нагрузок при нормативной глубине промерзания 1,4 м. Опыт многолетних расчётов малоэтажных домов показывает, что диапазон характерных нагрузок для всех домов составляет 2,0-14,0 тс/м. В кирпичных двухэтажных домах нагрузки на отдельные фундаменты могут достигать значений 18,0 тс/м. Как видим, область надёжного применения заглублённых щелевых фундаментов в пучинистых грунтах под малоэтажными домами существенно ограничена.

    Условия надёжного применения щелевых фундаментов
    1. Вертикальные стенки траншей не должны обрушиваться вплоть до окончания укладки бетона.
    2. Уровень грунтовых вод во время работ должен быть ниже дна траншей.

    Если в результате прошедших дождей на дне траншей образовались лужи, их необходимо вычерпать. Если грунт в этих местах пришёл в текучее или текучепластичное состояние, его необходимо срезать до уровня первоначального состояния.

    3. Заглублённые щелевые фундаменты в непучинистых грунтах применимы по устойчивости под всеми домами независимо от теплового режима дома, а также под кирпичными отапливаемыми домами в два (и выше) этажа в слабопучинистых грунтах. Во всех остальных случаях заглублённые щелевые фундаменты не применимы под малоэтажными домами в пучинистых грунтах по условию надёжности.

    Технология строительства щелевого фундамента для частного дома

    Щелевой фундамент является одним из наглядных примеров адаптации традиционного ленточного основания к глинистым грунтам. Отсутствие опалубки по всей высоте заливки и сокращение земельных работ существенно удешевляет стоимость строительства объекта. Щелевые фундаменты популярны для жилых домов малой этажности, гаражей, построек хозяйственного назначения и других строений.

    Особенности щелевых ленточных оснований

    Конструктивно щелевые фундаменты сопоставимы с монолитными ленточными основаниями, только вместо опалубки используется траншея. Внешне траншея чем-то схожа с щелью в земле, отсюда и название «щелевой» фундамент. Неровные борта земляной траншеи обеспечивают прочное сцепление грунта и залитой бетонной смеси.

    Формирование нижней части щелевой опоры происходит посредством грунта, выполняющего роль опалубки под подошву фундамента. Таким образом, нагрузки на грунт со стороны строения передаются всеми поверхностями фундамента – опорной плоскостью и боковыми стенками, то есть фундамент передает полный спектр нагрузок вертикального и горизонтального направлений.

    Закладку щелевых оснований производят в глинистых почвах. Заливкой бетонной смеси в распор траншеи создается жесткая пространственная конструкция, обеспечивающая устойчивость строения к весовым нагрузкам и выталкивающим усилиям морозного пучения. Изготовление щелевых фундаментов для домов, возводимых на песчаных почвах, не рекомендуется. Песок не удерживает геометрическую форму стенок, в результате осыпающийся грунт резко ухудшает качество заливаемой бетонной смеси и не способствует созданию работоспособного фундаментного монолита.

    К достоинствам щелевых фундаментов относят:

    • Существенное снижение трудоемкости строительных работ. Статистика утверждает, что переход на закладку щелевого фундамента сокращает объемы проводимых земляных работ практически в два раза, объемы работ с опалубкой – до 60-70%;
    • Снижение затратной части по бетону — до 6% и по арматуре – до 20%;
    • Возможность использования траншейных технологий в стесненных условиях при запрете проведения динамических воздействий на грунт, например, вблизи коммуникаций или около построенных зданий.

    Главным недостатком оснований щелевого типа является ограничение его применимости:

    • Допускается заливать только в глинистых грунтах, чтобы обеспечивалось сохранение формы траншеи при заливке бетонной смеси и ее уплотнении;
    • Использовать только на непучинистых грунтах, поскольку морозные пучения высокой интенсивности способны выпучить и перекосить возведенный дом, за счет бокового сцепления фундамента с грунтом;
    • На щелевых опорах не возводятся массивные постройки.

    Взаимодействие щелевых оснований с почвой

    При охлаждении воздуха в холодный период зимнего сезона начинается процесс промерзания почвы. В пучинистых грунтах характерен следующий процесс: по мере углубления фронта промерзания от поверхности земли в грунтовую толщу возникают касательные силы пучения, приложенные к боковым поверхностям фундаментов. При понижении температуры грунта величины удельных касательных и, соответственно, суммарных сил пучения Qf возрастают практически до 30 тс/м. Смерзание грунта в единое целое поддерживает лед, однако при весеннем потеплении лед теряет свои связующие свойства. При понижении температуры замерзшего грунта значения суммарных сил Qf достигают своего максимума и потом начинают снижаться. В процессе изменения касательных нагрузок пучения возможны два варианта событий:

    1. При превышении нагрузок воздействия со стороны построенного дома над значениями показателей Qf будет соблюдаться устойчивость опоры, деформация пучения – нулевая;
    2. При превышении значений Qf над нагрузками со стороны постройки фундамент теряет устойчивость и начинает перемещаться вверх вместе с замерзшим грунтом. При этом происходит отрыв подошвы фундамента от грунтового основания с образованием под ней объемной мини-полости. В процессе весеннего оседания постройки, связанного со снижением сил пучения, в образовавшуюся полость попадает грунт со стенок траншеи. Опора фундамента уже НЕ МОЖЕТ вернуться в исходное положение. Начинается крен всего строения, с годами все нарастающий.

    Методики расчета

    В зависимости от глубины заложения щелевые фундаменты подразделяются на два типа:

    • Глубоко заглубленные — заложенные ниже глубины промерзания почвы;
    • Мелкозаглубленные — применяемые на непучинистых почвах.

    Применительно к опорам ленточного щелевого типа необходимо использовать указания свода правил СП 22.13330.2011 «Основания зданий и сооружений. Актуализированная редакция СНиП 2.02.01-83*», регламентирующие расчеты фундаментов по двум группам предельных состояний (п.5.1.2):

    • Расчеты по несущей способности, относимые СП к первой группе предельных состояний, куда вошли разрушения конструкции, потеря устойчивости положения и т.п.;
    • Расчеты по деформациям, отнесенные СП ко второй группе предельных состояний, в число которых вошли недопустимые перемещения и т.п.

    Щелевые конструкции оснований дома, залитые ниже глубины промерзания необходимо рассчитывать на устойчивость от касательных сил пучения и по деформациям осадок. Мелкозаглубленные щелевые основания, залитые в пучинистых почвах, дополнительно рассчитывают по деформациям пучения. Справочные значения удельных касательных сил пучения приведены в табл. 6.10 СП 50-101-2004 «Проектирование и устройство оснований и фундаментов зданий и сооружений». По ним определяется расчетная нагрузка на фундамент для принятия решения о применимости щелевого ленточного основания.

    Этапы строительства

    При изготовлении щелевых оснований выполняются следующие этапы работ:

    1. Земляные работы по рытью траншеи в соответствии с проектом;
    2. Установка опалубки надземной части на необходимый уровень – будущий цоколь дома;
    3. Армирование в соответствии с проектом;
    4. Заливка бетонной смеси;

    Земляные работы

    Прокладка траншеи начинается со снятия верхнего плодородного слоя и использования его (при необходимости) для выравнивания площадки.

    Траншея выкапывается такой же ширины, как ширина фундамента. Глубина траншеи определена в проекте. Боковые грани траншеи должны быть ровными и не обрушаться во время всех подготовительных работ. Если прошел дождь, то образовавшиеся лужи обязательно осушаются. А «поплывший» грунт срезается до сухого слоя.

    Допускается расширение нижней части траншеи для опорной подошвы ленточного монолита. Устройство песчаной подушки не является обязательным для монолитных фундаментов глубокого заложения, а иногда может навредить. Если подушка из песка укладывается, необходимо виброуплотнение.

    Обустройство опалубки надземной части

    Выставляем опалубку и укрепляем боковыми подпорами.

    Для подготовки цоколя дома выставляют опалубку по высоте цокольной части от уровня поверхности грунта. Допускается изготовление цоколя как самостоятельной конструкции из кирпичной кладки или блочного типа.

    Армирование

    Укладываем арматурный каркас в траншею.

    Армирование производится вязкой арматуры. Особое внимание уделяется углам. Более подробно смотрите в материалах: армирование углов ленточного фундамента, как подобрать диаметр арматуры для ленточного фундамента.

    Укрепляем опалубку дополнительными поперечными перемычками сверху.

    Заливка бетонной смеси

    При подготовке бетонной смеси принято ее готовить, как минимум, на 10% больше расчетной потребности, полное заполнение раствором всех неровностей в грунте.

    В подготовленную траншею заливают приготовленную бетонную смесь. Оптимальным вариантом считается заливка непосредственно после подготовки траншеи, пока подсыхающие глинистые края не начали осыпаться. Для укрепления бетонной основы проводится процесс уплотнения, в результате щебень/гравий ложатся максимально плотно с удалением излишков воды и воздуха. Вариантами уплотнения являются штыкование либо виброуплотнение.

    Снимаем опалубку и убираем плодородный слой почвы внутри фундамента.

    Заключение

    Практика строительства легких зданий подтвердила экономичность использования щелевых ленточных оснований. Однако специфика применения этого типа оснований в зависимости от категории грунта требует высокой квалификации проектировщиков в части выполнения расчетов на устойчивость и деформации фундаментов домов. Нередко строители не проводят изыскания для определения свойств грунта на новостройке, а конструкцию фундамента принимают, перестраховываясь, как для сильнопучинистых грунтов, что приводит к удорожанию строительства. Грамотно обоснованное решение щелевого фундамента уменьшит трудоемкость строительства и сократит сроки возведения дома.

    Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

    Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

    Читайте также:  Древесина как основа для проведения строительных работ
    Ссылка на основную публикацию