Какую технологию для резки металла можно применить?

Какую технологию для резки металла можно применить?

Главная » Статьи » Какую технологию выбрать для резки металла

Свойства металлов напрямую зависят от их химического состава и технологии их изготовления. Возможные дефекты, которые могут образоваться в процессе производства, отражаются на качестве.

Чтобы исключить все возможные погрешности, необходимо выбрать технологию резки металла, которая справится с конкретной задачей лучше других. Выбор способа зависит от цели дальнейшего использования изготавливаемой детали и условия, при которых будет оформляться заказ на изготовление.

Это может быть

  • скорость обработки;
  • невысокая цена расходных материалов, простой способ их получения и экономичность процесса;
  • универсальность установки детали;
  • отличные качественные характеристики способа обработки;
  • низкий уровень причиняемого вреда.

Способы обработки металла

Для металла рекомендуется применение двух способов воздействия: механический и термический. К первой категории относятся сверление, штамповка, распилка, фрезерование, резка ножницами и водой. Последняя используется для гидроабразивной резки, то есть проводимой с использованием абразива, и гидрорезки, то есть без добавления абразивных частиц. Ко второй категории три вида резки: лазерная, плазменная и кислородная, а также технология электрической эрозии. Из всех перечисленных методов только гидроабразивная резка не предусматривает применение силы и может использоваться с материалами различной толщины.

Преимущества и недостатки различных способов резки металла

Гидроабразивная резка — одна из самых востребованных в настоящее время. Ее технология имеет максимум достоинств, среди которых особенно важно, что при ее выполнении поверхность металла не нагревается. Выполнение гидроабразивной резки исключает образование зоны воздействия высокими температурами, возникновение прожогов и окалин, токсичных испарений и газов. Данный способ предусматривает использование нескольких резаков и создание большого количества форм. Их недостатков можно выделить небольшой срок эксплуатации рабочих деталей, высокий уровень шумообразования и высокая стоимость. Сточные воды нуждаются в полноценной очистке.

Кислородная резка применяется для металлов различной толщины. Производителей привлекает невысокая стоимость оборудования и его обслуживания. К недостаткам можно отнести низкую скорость обработки и ограничения по качественному составу металла. Может быть применен только для углеродистых сталей. После применения данной технологии остается большая зона термического воздействия, а для получения высокого качества требуется идеальное состояние поверхности металла.

Лазерная резка производится в высоком скоростном режиме. Из достоинств следует выделить экономичность, небольшие разрезы, небольшую зону термического воздействия, многообразие форм, которые могут быть получены. Данная технология не подвергает материал деформации. Из недостатков стоит выделить ограничение по толщине материала, не более 2 см, не применяется при резке ряда материалов, дорогое обслуживание оборудование и низкая производительность.

Вырубка и сверление характеризуются высокой производительностью, даже при работе с перфорированными материалами. Технология отличается низкой себестоимостью и полным отсутствием зоны воздействия высоких температур. К недостаткам можно отнести деформацию металла и образование нечеткого среза. Также следует указать низкую безопасность процесса. Оборудование достаточно дорогое и имеет ограничение по формам деталей, сложные на нем лучше не изготавливать.

Электроэрозия — технология, которая позволяет работать с толстым материалом, при этом точность выполнения работ остается на высоком уровне. Можно использовать при резке нескольких тонких листов или материала с гофрированной поверхностью. Основной недостаток — низкая скорость выполнения работы.

Современные технологии резки металла в промышленности

Существует несколько методов промышленного разрезания металла. Это традиционные механические (при помощи специальных ножниц, резцов и пил) и ударные способы (посредством гильотины), термические (газокислородная, плазменная и лазерная резка) и холодный гидроабразивный метод.

В зависимости от формы и типа реза все методы можно классифицировать на поверхностные (частичное прорезание и просверливание локальных отверстий) и разделительные (нарезка заготовки на части). По качеству получаемой кромки все способы резки металла подразделяются на чистовые (не требуется проводить дополнительную обработку) и черновые (заготовительные).

Каждая технология имеет свои особенности. Это ограничение по толщине обрабатываемого сырья, различное качество получаемых кромок реза, производительность, скорость рабочего процесса и т.д.

Промышленная резка с помощью ленточно-пильных установок

Преимущество данной технологии в том, что она не требует значительных затрат. Оборудование отличается простотой конструкции, хорошей ремонтопригодностью и не требует проведения специального обслуживания. Такие станки состоят из корпуса, электродвигателя и пилы ленточного типа, зафиксированной шкивами. Показатель производительности – средний. Скорость резки ЛПС (ленточно-пильных станков) – не менее 100 мм/мин. Ассортимент оборудования данного вида довольнообширен – как по мощности/производительности, так и по функциональности. Современные модификации комплектуются электронными системами управления и имеют конструкцию, позволяющую «адаптировать» станок под особенности конкретного производства.

Благодаря точной настройке ЛПС разрезание металла можно проводить в полном соответствии с заданными параметрами. Кромки распиленных заготовок/деталей редко нуждаются в проведении дополнительной обработки – кроме случаев, когда необходимо добиться идеально гладкой поверхности. Разрезать на ленточно-пильных установках можно любые виды металла, которые сможет «взять» пила. Ширина реза довольно небольшая – всего полтора миллиметра.

Отладка ЛПС не требуют никаких специальных знаний и навыков. Главное – правильно подобрать пильное полотно. Такой станок несложно настроить самостоятельно – даже без руководства по эксплуатации. Оптимальные значения скорости движения пилы и подачи сырья можно определить по тому, какая образуется стружка. Если она пылеобразная, то скорость следует увеличить, если слишком крупная и с голубым отливом – уменьшить. «Золотая середина» – это слабовьющаяся стружка без «перекала».

Как уже говорилось, особое внимание следует уделить выбору режущего полотна. Оно должно быть предназначено для разрезания определенного металла и иметь соответствующий шаг зубьев. Здесь уже не обойтись без специальной таблицы –иначе можно испортить ленточное полотно. Одно из главных достоинств ЛПС – возможность разрезания под углом. Фигурный рез получить никак не удастся. Размеры используемых заготовок зависят от размеров рабочей платформы станка.

Промышленная ударная резка с использованием гильотины

Если обратиться к истории, то первую в мире гильотину изобрел доктор Гильотен (отсюда и название «инструмента»). В 1789 году он представил свое «детище» Законодательному собранию Франции. Конструкция представляла собой два столба высотой по пять метров с закрепленным наверху огромным лезвием, которое опускалось вниз по двум штангам. Как все мызнаем, гильотина предназначалась для проведения гуманных казней. Жертва погибала практически мгновенно, чего не скажешь о висельниках.

Гильотина уже давно не применяется для отрубания голов. Да и от самого изобретения Гильотена осталось только одно название – если говорить о гильотинах, применяемых для резки металла. Данный вид оборудования используется исключительно для разрезания листовых заготовок. В качестве режущих инструментов выступают специальные ножи, выполненные из особопрочной закаленной стали.

Существует несколько видов гильотин для резки металла – электромеханические, пневматические, гидравлические и обычные ручные. Работают они по одному принципу: вначале оператор укладывает лист на рабочую платформу и надежно фиксирует его посредством прижимной балки; затем размечает лист, располагая его таким образом, чтобы гильотина прошла в сквозное отверстие на столе. После этого остается только нажать на педаль/кнопку, чтобы нож «ударил» по листуи разрезал его. Автоматические гильотины требуют лишь частичного участия оператора и отличаются более высокой производительностью. Есть в продаже и модели, рассчитанные на разрезание листов как вдоль, так и поперек – без снятия заготовки с платформы.

Кромки разрезанного с помощью гильотины металла являются ровными и не имеют зазубрин. Точность размеров самих полос зависит от человеческого фактора – неопытный мастер может нарезать металл с определенной погрешностью. Ограничение по толщине металла – 6 мм (для самых мощных гильотин с гидравлическим приводом). Гильотины не рассчитаны на проведение как фигурной, так и простой криволинейной резки.

Промышленная газокислородная резка

Высокотемпературная резка с помощью смеси газа и кислорода по-прежнему продолжает пользоваться большой популярностью. В основном – за счет высокой производительности, мобильности и возможности фигурного раскроя. Разрезание можно проводить и в полевых условиях. Ведь баллоны с газом и кислородом реально доставить в любое место. А плазменные и лазерные установки предназначены для эксплуатации в стационарных условиях.

Перед резкой требуется предварительно прогреть рабочую поверхность пламенем резака (при подаче одного лишь газа). Только затем начинают подавать кислород для осуществления процесса разрезания. Начальный подогрев занимает несколько секунд – 5/40 (в зависимости от толщины и вида металла). Когда газокислородная струя «пройдет» насквозь через металл, горелку начинают равномерно перемещать по линии отреза. Кислород быстро расплавляет нагретый металл, а выделяемое при этом тепло «автоматически» прогревает металл по «ходу» резки. Кислород также удаляет образующиеся при газокислородной резке оксиды.

Во время процесса разрезания следует выдерживать одинаковое расстояние от сопла резака до рабочей поверхности. Оно определяется опытным путем. Газокислородный метод рассчитан на проведение резки заготовок толщиной до 200 мм. Данная технология предназначена для работы далеко не со всеми металлами. Хромоникелевые, высокоуглеродистые и высоколегированные стали газокислородной струе «не по зубам».

Алюминий и его сплавы разрезать газокислородным способом тоже не удастся. Во-первых, этот цветной металл имеет температуру плавления 660 °С, а температура его горения составляет 900 °С. Получается, что гореть алюминий начнет только в жидкообразном состоянии. Кроме того, при горении алюминия происходит образование оксидов, имеющих температуру плавления выше 2000 °С. Эти окислы не размягчаются при резке газокислородной смесью, поэтому удалить их будет довольно сложно. Помимо этого, алюминий является отличным проводником тепла. Так что на его разрезание (если бы оно было возможным) «ушло» бы слишком много газа и кислорода.

Для качественной и быстрой газокислородной резки необходимо точно рассчитать расход газа/воздуха и определиться со скоростью перемещения резака. Слишком быстрое перемещение горелки, помимо явного отставания режущей струи, приводит к бороздчатой и неровной линии отреза. Недостаточная скорость – к увеличению ширины реза и оплавлению кромок на внешней стороне заготовки (это становится причиной больших металлопотерь). Самый простой метод определения оптимальной скорости – по характеру выброса шлака и искр: они должны «вылетать» с обратной стороны с незначительным углом отклонения от вертикальной оси. Режущая способность газокислородной струи настраивается путем увеличения/уменьшения подачи кислорода.

Недостатками данной технологии являются большая ширина линии реза и его довольно низкое качество. По причине воздействия высокой температуры на кромках остаются наплывы, окислы и грат. К тому же, идеально равномерного нагрева добиться никак не получится. Поэтому металл частично деформируется. Соответственно, на какие-то доли искажается геометрия заготовок. Поэтому газокислородный способ чаще всего применяют для «нарезки» малоответственных деталей и заготовок, которые дополнительно обрабатываются перед тем, как «пустить их в дело».

Это один из высокотехнологичных способов разрезания металла, которое осуществляется при интенсивном прямом воздействии лазерного луча на заготовку. На технологических аспектах получения лазера мы останавливаться не будем, а сразу начнем с достоинств данного метода. Во-первых, это минимальная ширина реза (от 0,1 мм) и отличное качество кромок. Это достигается благодаря подаче целенаправленного лазерного потока в зону резания. Особенность лазерного воздействия в том, что критического перегрева металла нет (несмотря на высокую рабочую температуру), как при газокислородной резке, поэтому он сохраняет свои свойства – не деформируется и не окисляется. Высокотемпературный «след» может быть виден только на самой кромке.

Еще одно преимущество лазерной резки – высокая производительность и возможность фигурной резки. Одна профессиональная промышленная установка способна «нарезать» 10/12 тонн заготовок/деталей в сутки. Согласитесь, что такие цифры впечатляют. Лазерный луч способен «одолеть» металл со стенкой от 6 до 20 мм. Наибольшей эффективности рабочего процесса и лучшего качества конечного результата удается добиться при разрезании металла толщиной 6/7мм.

Главный минус лазерной технологии резки металла – очень низкий КПД самого лазерного луча (не более 15%). Кроме того, лазер не подходит для обработки алюминия, титана, и многих видов высоколегированных сталей. Они являются сильными отражателями. Мощности лазера может хватить для разрезания лишь самых тонких стальных листов, изготовленных из таких марок стали. Качество реза при «распускании» «нержавейки» будет довольно низким.

Способ разрезания металла при помощи высокотемпературной плазменной струи позволяет добиться более качественного результата, чем при использовании смеси газа и кислорода. Первые установки плазменной резки появились в середине двадцатого века. Они стоили «бешеных денег» и были очень громоздкими и тяжелыми. Поэтому таким оборудованием для резки металла обзаводились крупные промышленнопроизводственные компании. Современные станки плазморезки являются доступными по цене и отличаются высокой производительностью, автоматизацией настроек, небольшими габаритами и весом. Плазменный способ обработки металлов является самым востребованным на сегодняшний день. Большим спросом пользуются как специализированные установки для проведения резки, так и плазменные сварочные аппараты.

Технология плазменной резки имеет целый ряд преимуществ – по сравнению с тем же газокислородным способом. Газовые баллоны, за «заправку» которых приходилось бы регулярно платить, не требуются. Специальные присадки для резки «проблемных» металлов покупать также не придется. Не нужно и обеспечивать повышенные меры пожарной безопасности. Для резки посредством плазмы необходимы только воздух и электрическая энергия, а из расходников – неплавящиеся электроды и сопла. Еще один плюс – возможность фигурной резки.

Суть плазморезки заключается в следующем: высокотемпературная электрическая дуга расплавляет металл, а образовавшийся расплав «выдувается» интенсивным потоком плазмы. Плазма представляет собой частично или полностью ионизированный газ, температура которого может составлять 15 000/20 000 градусов по Цельсию. Естественно, что производительность плазменной резки в несколько раз превышает производительность газокислородного метода, так как температура горящей смеси воздуха и газа не превышает 1 800 градусов.

Рабочий процесс плазменной резки, как и в случае с другими способами раскроя при высоких температурах, проводится с учетом толщины и характеристик теплопроводности металлов. Чем выше тепловая проводимость последних, тем с меньшейтолщиной заготовки сможет «справиться» плазменная струя. Вот некоторые виды черных и цветных металлов, раскраивать которые с помощью плазмы наиболее выгодно с экономической точки зрения:

Читайте также:  Пробковые обои, пробковое полотно, настенные плиты: что это

1. Углеродистые и легированные стали со стенкой до 50 мм;
2. Все виды чугуна со стенкой до 90 мм;
3. Алюминий и его сплавы со стенкой до 120 мм;
4. Медь со стенкой до 80 мм.

При толщине металла свыше 120 мм целесообразнее использовать гидроабразивную или газокислородную резку.

Кромки разрезанного плазменной струей металла приобретают большую твердость. Дополнительная их обработка потребуетденежных вложений. Но это только в том случае, когда требуется довести кромки до идеального состояния. Более чем для 95% предприятий металлообработки достаточно того качества, которое «выдает» плазменная резка. Если сравнивать с газокислородной резкой, то при плазменном способе металлопотери значительно меньше, линия отреза – ровная, полностьюотсутствует окалина, кромки не перекаливаются и не деформируются.

Это самый прогрессивный метод на сегодняшний день, позволяющий проводить высококачественную резку металла толщиной до 300 мм. Основной конструктивный элемент установок гидроабразивной резки – это насос сверхвысокого давления. Сейчас уже существуют экспериментальные модели агрегатов с рабочим водяным давлением 6 000 бар. Это просто фантастическая цифра. Когда вода проходит через рубиновое, алмазное или сапфировое сопло, имеющее диаметр всего 0,1 мм, то она набирает скорость, которая в три раза превышает скорость звука! Эта тончайшая направленная струя раскраивает практически все известные виды металлов и их сплавы.

Производительность гидроабразивной резки впечатляет. К примеру «распускание» листа «нержавейки» со стенкой 100 мм производится со скоростью 22 мм в минуту. А нержавеющая сталь со стенкой 1 мм разрезается в десятки раз быстрее – 2 700 мм в минуту. Гидроабразивным методом, как и лазерным, раскраивают не только металлы, то и другие материалы. Приработе с более «податливым» сырьем скорость резки посредством гидроабразивной струи может быть еще больше. В случаесо стеклом средней толщины она составит примерно 11 000 мм в минуту. Прочные композиты режутся немного медленнее.

Как правило, разрезание материалов с мягкой структурой осуществляют струей чистой воды. Абразивы (чаще всего это гранатовый песок) подмешивают для работы с металлами и другими твердыми материалами. Однозначно сказать, что гидроабразивная технология «лучше всех», нельзя. Каждый метод имеет свои преимущества и недостатки. Например, для разрезания заготовок толщиной до 6 мм лучше подходит лазер – в плане экономичности. А вот для качественного разрезания металлов толщиной более 6 мм лучше всего использовать гидроабразивные или плазменные установки.

Конечно же, холодная гидроабразивная струя позволяет получать кромки высочайшего качества. Любая деформация, образование окалины, окислов и т.п. полностью исключаются. Идеально ровные кромки не требуют проведения никакой дополнительной обработки.

Некоторые материалы проблематично разрезать плазмой по причине их низкой электропроводности. Лазер не «режет» заготовки, которые отражают луч. В этом отношении гидроабразивный способ является универсальным.

Метод разрезания металла водно-абразивной струей обеспечивает наименьшие металлопотери. При работе с заготовками, имеющими стенку 50 мм, ширина реза при использовании газокислородного способа составит 20 мм, а гидроабразивная технология «переводит» всего 2 мм ширины. Экономия на 1 метр реза – 15 кг сырья.

Что касается минусов гидроабразивной резки, то их два: высокая стоимость процесса и быстрый износ определенных узлов и деталей самого оборудования. Из-за работы под высоким давлением гидроабразивные установки требует регулярного проведения обслуживания и ремонта.

Резка металлов. Способы, инструмент для резки металла

Металл режут ручными или механическими ножовками, а также ручными и механическими, рычажными, параллельными и дисковыми (круглыми) пилами.

Крупный сортовой металл (круглый, полосовой, угловой, двутавровый и т.п.) разрезают на приводных ножовках и дисковых пилах, а также электрической и газовой резкой, листовой металл – ручными и приводными ножницами, трубы – вручную ножовкой и труборезом (механическую резку осуществляют на специальных станках).

Для резки закаленной стали и твердых сплавов применяют тонкие дисковые шлифовальные круги, а также анодно-механический и электроискровой способы резки металлов.

Устройство ручной ножовки. Ручная ножовка (рис. 1) состоит из станка (рамки), в котором закреплено ножовочное полотно.

Рис. 1. Ручная ножовка: 1 – барашек; 2 – натяжная серьга; 3 – станок; 4 – неподвижная серьга; 5 – ручка; 6 – ножовочное полотно

Ножовочные полотна изготовляют из инструментальной стали марок 9ХС, У10, У10А, У12, У12А или мягкой углеродистой стали (У8, У8А, У9 и У9А) с последующей цементацией зубьев. Ножовочное полотно термически обработано так, что нижняя рабочая часть полотна с зубьями термически обработана с большей твердостью, чем верхняя. Такая термическая обработка уменьшает поломки ножовочного полотна при работе. Ножовочные полотна изготовляют с мелким и крупным зубом. Количество зубьев на 25 мм длины ножовочного полотна колеблется от 15 до 32. Зубья полотна разводят в разные стороны, чтобы уменьшить трение полотна о боковые поверхности обрабатываемой заготовки и исключить заклинивание полотна в пропиле. Величина развода зубьев должна быть такой, чтобы ширина пропила была больше толщины ножовочного полотна на 0,25–0,5 мм.

Разводят зубья отгибанием каждых двух смежных зубьев в противоположные стороны на 0,25–0,6 мм. Применяют развод мелких зубьев созданием волны вдоль нижней части полотна. Амплитуда и шаг волны зависят от толщины полотна и размера зубьев.

Для резки мягких и вязких металлов (медь, латунь) применяют ножовочные полотна с шагом зубьев – 1 мм, твердых металлов (сталь, чугун) – 1,6 мм, мягкой стали – 2 мм. Для слесарных работ обычно применяют ножовочные полотна, у которых на длине 25 мм размещается 15 зубьев.

Прорезание шлицов в головках мелких винтов под отвертку производят ножовками с тонким полотном (толщина 0,8 мм). В головках более крупных винтов шлицы прорезают обыкновенной ножовкой. Широкие шлицы в крупных винтах прорезают полотнами толщиной 1,5–3 мм или в ножовку вставляют одновременно два-три полотна нормальной толщины.

Процесс резки ножовкой. Прежде чем приступить к работе, нужно выбрать ножовочное полотно, сообразуясь с твердостью, формой и размером разрезаемого материала. Необходимо также проверить, правильно ли вставлено полотно в рамку: зубья должны быть направлены остриями от рукоятки, натяжение полотна должно быть достаточно сильным, но не чрезмерным, так как это может вызвать поломку полотна.

Положение корпуса и рук слесаря при работе должно быть таким, как показано на рис. 2, а. Другой способ захвата рамки приведен на рис. 2, б (разница – в положении пальцев).

Рис. 2. Положение рук на рамке при резке ножовкой

Во время резки ножовку держат преимущественно в горизонтальном положении. Движения должны быть плавными, без рывков и с таким размахом, чтобы работало почти все полотно, а не только его середина (нормальный размах не менее 2/3 длины ножовочного полотна).

Усилие нажима на ножовку зависит от твердости обрабатываемого металла и его размеров. В среднем усилие должно соответствовать 1 кг на 0,1 мм толщины полотна.

Нажимать на станок необходимо обеими руками, при этом наибольшее давление оказывать левой рукой, а движение станка осуществлять главным образом правой рукой, приложенной к его ручке. При холостом ходе на ножовку не нажимают. При работе ножовочным станком нужно делать не более 40–50 ходов в минуту. При более быстром темпе полотно нагревается и быстрее затупляется.

Если в начале резки ножовка скользит по поверхности, то место распиливания надрубают зубилом или надрезают ребром напильника.

При резке деталей, имеющих острые ребра, необходимо обеспечивать плавный заход зубьев в металл и не допускать подпрыгивания станка при переходе от зуба к зубу. В противном случае зубья выламываются из полотна и процесс резки оказывается невозможным.

Ручной ножовкой чаще всего работают без охлаждения. Для уменьшения трения полотна о стенки пропиливаемой канавки его полезно смазывать машинным маслом, густой смазкой из сала или графитной мазью, в состав которой входят 2 части сала и 1 часть графита. При механической резке приводную ножовку необходимо охлаждать жидкостью – мыльной водой или эмульсией.

Слабое натяжение полотна иногда способствует “уводу” его в сторону. При уводе полотна следует начать резку в новом месте – с обратной стороны. Попытка выправить косую прорезь приводит к поломке полотна.

Для более продолжительного использования ножовочного полотна рекомендуется вначале разрезать им мягкие материалы, а затем, после некоторого затупления зубьев, – более твердые.

При поломке хотя бы одного зуба работу ножовкой следует прекратить, иначе произойдет поломка смежных зубьев и быстрое затупление всех остальных. Для восстановления режущей способности ножовки, у которой выкрошился зуб, необходимо на точиле или шлифовальном круге сточить дватри соседних с ним зуба по линии а – а (рис. 3).

Рис. 3. Восстановление режущей способности ножовки

Если во время резания сломалось старое, сработавшееся ножовочное полотно, то нельзя продолжать работу новой ножовкой, так как ширина пропила для нового полотна окажется мала и оно не войдет в прорезь. В этом случае поворачивают изделие и начинают резание в другом месте.

Разрезать материал ножовкой легче по узкой его стороне. Поэтому полосовой металл, как правило, режут по узкой стороне полосы, но это можно лишь при условии, если на длине реза с металлом соприкасается не менее двух-трех зубьев полотна. При меньшей толщине полосы зубья ножовки могут выломаться, поэтому тонкую полосовую сталь разрезают по широкой стороне.

Тонкие металлические листы при разрезке ножовкой зажимают между деревянными прокладками по одному или несколько штук и разрезают вместе с прокладками. Такой способ обеспечивает лучшее направление ножовочному полотну и предохраняет его от поломок.

Для вырезки в тонких листах криволинейных или угловых прорезей применяют лобзик. Вместо ножовочного полотна в лобзик вставляют узкую тонкую пилку, у которой зубья направлены к ручке. Пилят лобзиком на себя, а если выпиливаемый лист положен горизонтально, то сверху вниз, держа лобзик за ручку снизу. Перед выпиливанием внутренних фигур или прорезей в местах перехода контура в углах просверливают мелкие (по ширине пилки) отверстия. Пропустив в такое отверстие пилку, закрепляют ее в рамке лобзика.

Процесс резки ножницами. При разрезке листового материала ножницами режущие кромки челюстей ножниц, действуя одновременно, создают напряжения сжатия и растяжения вблизи режущих кромок (рис. 4) и разрушают связь между частицами материала.

Рис. 4. Процесс резки ножницами: 1 – напряжения растяжения; 2 – напряжения сжатия

Челюсти (ножи) ножниц, как и другие режущие инструменты, имеют задний угол α, передний угол γ и угол заострения β (рис. 5), величина которого зависит от свойств разрезаемого материала. Для мягких металлов (меди, латуни и др.) β = 65°, металлов средней твердости – β = 70 ÷ 75° и твердых металлов – β = 80 ÷ 85°.

Рис. 5. Углы заострения челюстей ножниц

При угле заострения меньше указанного ножи быстро затупляются или лезвия их выкрашиваются. Большие углы заострения увеличивают прочность лезвия, но при этом усилия резания возрастают.

Для уменьшения трения касающихся плоскостей режущие кромки ножниц рекомендуется смазывать машинным маслом. Чем точнее пригнаны одна к другой режущие части челюстей ножниц, тем чище получается поверхность среза. Закаленные челюсти ножниц ни в коем случае не должны тереться одна о другую, так как они при этом затупляются (между ними зазор 0,2–0,02 мм). При большем зазоре между челюстями тонкий листовой материал затягивается в зазор и закаленные режущие кромки могут выкрошиться.

Листовую сталь толщиной до 0,7–1 мм режут простыми ручными ножницами (рис. 6, а).

Рис. 6. Ручные ножницы: а – простые; б – рычажные

Допустимая толщина в мм других материалов, разрезаемых на ручных ножницах, следующая: твердый алюминий – 1,0; мягкий алюминий – 2,5; сталь – 0,7; латунь – 0,8; медь – 1,0.

Для слесарных работ применяют ручные ножницы, полная длина которых составляет от 200 до 400 мм, а длина лезвия от 55 до 110 мм.

Изготовляют ножницы из углеродистой инструментальной стали У7, У8, У10.

Ручные ножницы бывают правые и левые. У правых ножниц скос на режущей части каждой половинки находится с правой стороны, у левых – с левой. При резке листа правыми ножницами все время видна риска на разрезаемом металле. При работе левыми ножницами, для того чтобы видеть риску, приходится левой рукой отгибать срезаемый металл, что очень неудобно. Поэтому листовой металл по прямой линии и по кривой (окружности и закругления) без резких поворотов режут правыми ножницами.

Резка простыми ножницами происходит только под действием силы Р1, которая направлена перпендикулярно к поверхности листа и вдавливает челюсти в материал. Горизонтальная составляющая S выталкивает заготовку из зева ножниц до тех пор, пока величина ее больше силы трения, возникающей между челюстями ножниц и заготовкой. Это продолжается до раскрытия челюстей на угол 30°.

У ручных рычажных ножниц (рис. 6, б) угол раскрытия должен составлять 15°. Подвижная верхняя челюсть у ручных рычажных ножниц имеет криволинейную режущую кромку, что при всех положениях верхнего ножа обеспечивает угол раскрытия 15°. Теоретически этот угол должен быть около 8–9°, так как тангенс его имеет значение, равное коэффициенту трения стали о сталь в сухом состоянии μ = 0,15.

При поддерживании разрезаемого материала угол раскрытия ручных рычажных ножниц может быть больше. Резка под углом меньше 10° является самотормозящей, при таком угле заготовка не выталкивается из зева ножниц. Листовой материал толщиной до 2–3 мм разрезают стуловыми и рычажными ножницами. Стуловые ножницы отличаются от ручных размерами и конфигурацией. Одна из их ручек сделана так, что ее можно жестко закрепить в тисках или прикрепить к деревянной колоде (стулу). Общая длина стуловых ножниц 400–1000 мм, длина лезвий 100–250 мм, длина ручек 300–750 мм.

Читайте также:  Материалы для загородных домов

Кроме простых и рычажных существуют ручные ножницы с зубчатой передачей, маховые и дисковые. Ручные ножницы с зубчатой передачей предназначены для резания листового металла, тонких прутков и профильного материала. Рычажные маховые ножницы применяют обычно для прямых разрезов листового металла толщиной до 2 мм на полосы. На конце рычага помещен уравновешивающий груз.

Дисковые ножницы используют для резки листовой стали толщиной до 1 мм как с прямолинейным срезом, так и по кривой любого радиуса. Нижний режущий диск ножниц закреплен на эксцентриковой оси, которая позволяет изменять положение диска по высоте. Верхний режущий диск вращается на валике, который поворачивают рукояткой при помощи храпового колеса и собачки.

Машинные ножницы. Приводными машинными ножницами режут листы и полосы толщиной более 3 мм .

Дисковую ручную пилу применяют для резки профильного проката и труб (рис. 7). В зависимости от профиля разрезаемого металла пила комплектуется сменными направляющими упорами.

Рис. 7. Дисковая ручная пила

Резка производится вулканитовым кругом 4, шпиндель которого закреплен на качающейся раме 5. Вращение круга осуществляется через ременную передачу 7 электродвигателем 8, а подача круга – вручную рукояткой 6. Разрезаемый профильный прокат устанавливают на призмы 1 до регулируемого упора 2 и закрепляют откидным прижимом 3. По окончании резки рама 5 возвращается в исходное положение пружиной 9. Частота вращения абразивного круга 2000 об/мин.

Заменяя абразивный круг тонким стальным диском, можно производить резку на мерные длины резиновых шлангов и шлангов высокого давления из прорезиненных тканей для пневмо- и гидросистем.

Гильотинные ножницы с наклонными ножами (гильотинные) применяют для резки листового и реже полосового проката, а также листовых неметаллических материалов.

Существует большое количество различных типов ножниц, отличающихся друг от друга как по конструктивным признакам, так и по технологическим характеристикам.

На рис. 8 показаны ножницы с наклонными ножами.

Рис. 8. Гильотинные ножницы

Резать материал на этих ножницах можно по разметке и без нее с помощью удлинителей 3. Станина 1 ножниц сварная из листовой стали. В ее передней части закреплен стол 2, на котором установлены удлинители 3 с Т-образными пазами, служащими для удлинения стола в случае разрезания больших листов, а также для установки передних упоров и различных приспособлений.

Привод ножниц осуществляется от отдельного электродвигателя через клиноременную и зубчатую передачи на коленчатый вал. Ножевая платформа (ползун) 4, приводимая от коленчатого вала через шатуны, двигается вверх и вниз. Расположение привода верхнее. Управляют ножницами при помощи кнопок и педали 6. Задний упор 5 состоит из двух цилиндрических реек; на них от одного маховика передвигаются кронштейны для установки упорной линейки на необходимое расстояние от кромок ножей. Мерная резка листа достигается с помощью заднего упора. Ножницы могут работать одиночными ходами и непрерывными (автоматически).

Обычно ножницы снабжены прижимами для удержания разрезаемого материала. Прижимы действуют автоматически при перемещении ползуна вниз.

Максимальная толщина разрезаемого на этих ножницах материала составляет 20–32 мм при ширине реза 2000–3200 мм. Мощность электродвигателей для привода ножниц – от 1,7 до 20 кВт.

Ножницы с наклонными ножами используются для резки по прямым линиям. На них режутся листы на полосы для последующей штамповки, а также мерные заготовки. Изменяя положение упоров, можно изготовлять заготовки трапецеидальной, ромбовидной, треугольной и другой формы.

На ножницах можно вырезать и заготовки более сложной формы по разметке (без применения упоров), а также срезать кромки листа под углом к плоскости реза до 30° (например, при подготовке под сварку). В последнем случае заготовку располагают наклонно к плоскости стола с помощью специальных подставок.

Комбинированные пресс-ножницы (рис. 9) предназначены для резки листового и реже полосового проката, профильного сортового проката (круг, квадрат, уголок, швеллер), а также для пробивки отверстий и выполнения разрубочных работ.

У таких ножниц в зависимости от модели имеются: пробивное устройство 1, ножницы для резки профильного сортамента 2, разрубочное устройство 3 и ножницы для резки листового проката 4.

Рис. 9. Комбинированные пресс-ножницы

Принцип резки сортового проката заключается в том, что материал, помещенный между ножами соответствующего профиля, разрезается при сдвиге одного (подвижного) ножа по отношению к другому (неподвижному).

Пробивка отверстий, как и зарубочные работы, производится чаще всего по разметке и в отдельных случаях по специальным шаблонам. Шаблон повторяет контур высечки. Он накладывается на заготовку и помогает ориентировать ее по отношению к ножам.

Резка на листовых ножницах производится в основном по разметке. Мерные по длине заготовки из проката отрезаются по специальным упорам или по разметке.

Способы и технология резки металла

Сейчас мы познакомим вас с основными способами резки металла, об их преимуществах и сферах применения. Более подробно читайте далее.

Раскрой металлических листов и производство заготовок заданных размеров из профильного проката требует выполнения определенных операций по специальным технологиям. Прочность, хрупкость, термостойкость, уровень электропроводимости и химический состав сплава при этом непременно учитываются. Обработка должна обеспечить получение деталей максимально точного размера без нарушения основных его свойств.

Для наиболее качественного выполнения этих задач разработаны различные виды резки металла, отличающиеся как сложностью технологии, так и универсальностью применения. Большинство из видов резки реализуются в на промышленном оборудовании, отличающимся сложностью устройства, высокой продуктивностью и возможностью установки систем ЧПУ. Но есть ряд способов резки, которые можно реализовать и с помощью портативных станков и приспособлений в небольшой мастерской, домашнем гараже или непосредственно на объекте, где производится монтаж металлоконструкций.

В этой статье вы можете познакомиться с основными способами резки металла, узнать об их преимуществах и сферах применения. Более подробно виды металлообработки резкой рассмотрены в специальных статьях рубрики, каждая из которых посвящена конкретному способу и оборудованию, которое при этом применяется.

Промышленные виды резки металла

Наиболее популярны технологии резки, позволяющие производить максимальное количество деталей высокой точности за короткий промежуток времени. На крупных предприятиях чаще всего используются:

  • плазменная;
  • лазерная;
  • газовая;
  • гидроабразивная
  • резка металла на станках с ЧПУ

Плазменная резка — обработка токопроводящих металлов и диэлектриков любой твердости струей раскаленного газа (плазмы) при температуре 5-30 тысяч градусов Цельсия, разогнанной электрическим полем до скорости около 1500 м/с. Режется, в основном, листовой металл толщиной до 200 мм. После прохода струи плазмы получается очень тонкий, ровный и гладкий разрез, не требующий дополнительной обработки кромок. Технология плазменной резки одна из самых точных и быстрых. Прилегающая к разрезу зона металла не перегревается и структура ее не нарушается.

Лазерная резка — не уступает по точности обработке плазмой. В этом случае рабочим органом выступает мощный лазерный луч высокой точности фокусировки. Металл мгновенно плавиться, сгорает и испаряется, оставляя чистый узкий рез. Если производится обработка листов толщиной более 15 мм, то зона реза дополнительно обдувается инертным газом, воздухом или охлаждается водой. Чаще всего применяется лазерная резка при изготовлении сложных по контуру деталей из цветных металлов, сплавов и сталей толщиной 12-20 мм. Преимущество — возможность резки сверхтонких и очень хрупких материалов.

Гидроабразивная резка металла на станках ЧПУ позволяет обрабатывать пакеты из нескольких листов, что очень удобно при крупносерийном производстве. Недостаток — возможность коррозионных воздействий.

Газовая резка металла, как и резка сваркой (электродной), предполагает воздействие на материал температуры, которая значительно выше точки плавления в ограниченной зоне действия кислородно-пропанового потока. Отличается невысокой точностью реза, но не требует чрезмерно сложного оборудования и может производиться в любых условиях. Резка электродами приносит те же результаты, но требует подключения оборудования к электросети.

Механическая резка металла

Отрезные станки с дисковыми пилами (кругами) производятся как в виде ручного инструмента (болгарки), так и в виде стационарного или мобильного оборудования. Резка труб, профиля и листа производится путем воздействия вращающегося с большой скоростью абразивного круга на металл, при котором возникает большая сила трения, приводящая к нагреванию и выгоранию металла в зоне контакта.

Резать можно с высокой точностью (толщина реза всего 1-2 мм) и с высокой скоростью. Очень удобны такие станки при изготовлении строительных и водопроводных конструкций, в ремонтных работах.

Вторым по популярности способом механического раскроя листа является рубка металла. Горизонтально расположенный нож прижимается к листу с большой силой и разрушает его в зоне контакта. Работает пресс как обычные ножницы с двумя скользящими мимо лезвиями. Усилие создается гидравликой, пневматикой или эксцентриковым механизмом.

В это же время резка и рубка профлиста может выполняться на переносных сабельных гильотинах, которые можно установить непосредственно на объекте — они не требуют подключения к сети и приводятся в движение только силой руки или ноги человека. Особенности материала — наличие оцинковки и полимерного покрытия, ограничивает использование болгарок, плазморезов или других инструментов, предполагающих нагревание до высокой температуры. При этом разрушается покрытие и в зоне реза возникают трудноустранимые очаги коррозии.

Резка металлочерепицы возможна только механическим способом. При продольной резке вдоль профиля можно использовать роликовый резак или специальные ножницы по металлу. Диагональная и продольно-поперечная резка возможна только при помощи специальных инструментов — электроножниц по металлу со специальными насадками.

Данная статья предлагается в качестве предварительного обзора чаще всего применяющихся на практике в промышленных и домашних условиях видов резки листового и профильного металла. Более подробно об их применении в конкретных условиях вы можете узнать в соответствующих рубриках сайта.

Своим опытом в сфере резки металла предлагаем поделиться на нашем сайте в разделе «Комментарии». Ждем также ваших обзоров конкретного оборудования, которым вы пользуетесь. Нас и наших читателей интересует как мнение профессионалов, так и любителей работать с металлом.

Резка металла

Резка металла – процесс деления металлического листа, трубы или отливки на отдельные части с помощью ручной, механической и термической операции.

Одним из вариантов резки металла является операция раскроя заготовки. В этом случае готовое изделие имеет размеры и конфигурацию, указанные в чертеже.

Гидроабразивная резка металла

Этот метод один из первых начал использоваться для раскроя металла. Заготовки заданной формы вырезали из металлического листа струей воды, смешанной с абразивом и подаваемой под давлением до 5000 атмосфер.

Метод имеет ряд ограничений по марке металлического сплава, толщине раскраиваемого листового материала, хотя позволяет выполнить раскрой деталей со сложной траекторией.

Для повышения производительности процесса существует возможность одновременного раскроя тонких листовых материалов в стопке из нескольких слоев.

Раскрой листового металла значительно ускорился, когда появилось оборудование для термической резки. Теперь для раскроя используют установки плазменной резки. Другой вариант оборудования для раскроя – лазерный станок. Функция раскроя, как правило, является одной из опций заложенной в программном продукте таких машин.

Высокоскоростной раскрой, выполняемый по программе, позволяет максимально выгодно расположить детали на листе, минимизирует отходы. При этом лазерный или плазменный автоматизированный раскрой безопасен, экономичен, не вредит экологии.

Резка металла: виды

В промышленном производстве применяют такие способы резки металла – листов, пластин, труб и прочего на части, заготовки:

  • ручная;
  • термическая резка;
  • механическая и ударная.

Каждому из этих способов соответствует своя технология, свои вид оборудования. Каждый процесс по-своему уникален, наделен своими преимуществами и недостатками. Рассмотрим основные способы резки металла подробнее.

Ручная резка металла

Этот способ разрезания материала выполняется мастером с помощью шлицевых ножниц по металлу, угловой шлифовальной машины – «болгарки» или трубореза.

Для раскроя «болгаркой» применяют специальные абразивные круги «по металлу».

Труборезы, у которых рез выполняется дисковыми резцами-роликами из стали, используют для разрезания труб.

Скорость и точность работ, выполняемых вручную, полностью зависят от человека. Толщина разделяемого металла (особенно шлицевыми ножницами) ограничена.

Ручной метод малоэффективен, практически не эксплуатируется в промышленных масштабах. Главная сфера использования ручной резки – в быту.

Термическая резка металла

Применяют такие виды терморезки:

Все эти методы являются бесконтактными, т.е. при работе между заготовкой и режущим инструментом нет непосредственного контакта. Заготовка разделяется с помощью струи газа, плазмы или луча лазера.

Газокислородная резка

В основу технологического процесса заложены свойство металла нагреваться, плавиться и выгорать в чистом кислороде при высокой температуре (более 1000 °C).

Перед началом технологической операции необходимо разогреть место реза до такой температуры, при которой происходит воспламенение материала. Эта операция разогрева выполняется за счет пламени резака. В качестве разогревающего газа чаще всего эксплуатируют ацетилен. Время прогрева зависит от толщины, марки и состояния обрабатываемой металлической поверхности. Кислород на этом этапе не используется.

После прогрева к операции добавляется кислород. Струя пламени, равномерно перемещаясь вдоль линии реза, прорезает полуфабрикат на всю толщину. Кислород, используемый в процессе, не только режет, но и удаляет окислы, которые образуются на поверхности разрезаемого листового полуфабриката.

Важный критерий для получения качественного реза – выдерживание одинакового расстояния между резаком и разрезаемой поверхностью на протяжении всей операции. Этого сложно добиться, если резка металла выполняется ручным газокислородным резаком. При автоматизированном процессе (скоростная, газокислородная с повышенным качеством, резка кислородом высокого давления) скорость резания увеличивается, а качество реза возрастает.

  • возможность разрезать заготовки большой толщины;
  • возможность резать титановые листы.
Читайте также:  Преимущества и особенности вторичных полимеров

Отдельные недостатки газокислородной резки:

  • резке не поддаются цветные металлы типа алюминия, меди, а также высокоуглеродистые или хромоникелевые стали;
  • большая ширина реза, невысокое качество, образование окислов, наплывов,
  • невозможно работать с криволинейными поверхностями;
  • изменение физических свойств в области реза.

Лазерная резка

Эта технология подразумевает резку и раскрой металла посредством сфокусированного лазерного луча, получаемого при помощи специального оборудования.

Луч лазера сосредотачивается в определенной точке разрезаемой детали. Под воздействием тепловой энергии лазерного луча поверхность прогревается, закипает и испаряется. Луч плавно передвигается вдоль границы реза, разделяя металлическую заготовку на части.

Лазерная резка применяется для разделения металлов с низкой теплопроводностью. Ее используют при резке, раскрое тонких листов (от 0,2 мм), цветных металлов (алюминия, меди), нержавеющей стали, трубных изделий.

Уникальность метода: обрабатываются практически все металлы, металлические сплавы, неметаллы.

Ряд недостатков технологии резки лазером:

  • ограничение по толщине разделяемых изделий;
  • большие энергетические затраты в ходе процесса;
  • работу может выполнить только специально обученный персонал.

Плазменная

Эта технология подразумевает использование в качестве оборудования плазмотрон, в котором роль режущего инструмента выполняет струя плазмы.

Раскаленный ионизированный газ (плазма) с высокой скоростью проходит через сопло плазматрона. Плазма нагревает, расплавляет металл, а затем сдувает расплав, тем самым образуя линию раздела заготовки.

  • безопасность процесса;
  • высокая скорость;
  • незначительный ограниченный нагрев разрезаемой поверхности.

Недостатки данной технологии – высокая цена оборудования, необходимость в обучении персонала, шум при работе плазменных установок, ограниченность значений толщин обрабатываемого металла.

Механическая резка металла

Механическое разделение основано на прямом контакте обрабатываемого металла с режущим инструментом. Материал инструмента, как правило, тоже металл, но более высокой твердости.

Выделяют механическую резку с применением ножниц, пилы, резцов. Частным случаем механической резки выступает ударная (рубка). Ударная резка или рубка с помощью гильотины используется на стадии заготовительных работ.

Виды оборудования, используемые для механического разделения материалов:

  • ленточно-пильные станки (ЛПС);
  • гильотины;
  • дисковые станки;
  • токарные станки с установленными на них резцами;
  • агрегаты продольной резки.

Резка ленточной пилой

Разрезание материала ленточной пилой часто используется для разделения сортового, листового металла. Пила ленточная – основной узел на так называемом ленточно-пильном станке (ЛПС). Суть работы пилы ленточной такая же, как у обычной ножовки. Полотно пилы замкнуто в ленту большого диаметра, одна сторона которого имеет специальные зубья. Лента пилы движется непрерывно за счет вращения шкивов, подключенных к электромотору. Средняя скорость резки станка – 100 мм/мин. Материал для изготовления полотна пилы – углеродистая сталь или биметаллический сплав.

Достоинство метода: точность, доступность, невысокая цена оборудования, возможность выполнять не только прямой, но и угловой рез; малый процент отходов, так как ширина реза составляет всего 1,5 мм.

Современные модели ЛПС оснащаются электроникой и дополнительным оборудованием, с помощью которого можно включить станок в состав технологической линии.

Ударная резка металла на гильотине

Такой вид обычно именуют рубкой. Основная сфера применения рубки – разделение листового металла. Это может быть черный металл, различные виды стали – нержавеющая, оцинкованная или электротехническая сталь.

Метод основан на использовании механических приспособлений: ножниц, ножей для рубки металлического листа. Металлический лист размещают на рабочей поверхности гильотины. Закрепляют с помощью прижимной балки и выполняют операцию.

Уникальность метода состоит в том, что рубка (резка металла) происходит одномоментном ударом ножа по всей длине разрезаемой заготовки. В результате получается абсолютно ровный край без лишних кромок и заусенцев.

В промышленном производстве применяют три вида гильотин:

  • электромеханические;
  • гидравлические;
  • пневматические.

На некоторых производствах сохранились ручные гильотинные ножницы, где режущий механизм включается нажимом на педаль.

К недостаткам можно отнести шум при работе механизма, ограничение по толщине заготовки, разность ширины у отрезанных частей.

Резка на дисковом станке

Основное достоинство данного оборудования простота эксплуатации, компактность, универсальность.

Роль режущего инструмента играет диск с зубьями, защищенный кожухом. Диск крепится на поверхности рабочего стола, приводится в действие электродвигателем.

Резка дисковой пилой характеризуется высоким качеством среза, возможностью раскроя под углом, высокой точностью обработки.

Агрегат продольной резки – узкоспециализированное оборудование, которое эксплуатируется исключительно для продольного разделения металлической заготовки.

Процесс резания полностью автоматизирован. Оператор следит за процессом и управляет работой, находясь за специальным пультом.

Уникальность метода: возможность разделить листы на узкие элементы большой длины (ленты, полосы, штрипсы).

Общие недостатки, свойственные всем видам контактной резки можно сформулировать так:

  • режется только по прямой линии или под углом;
  • проблематично получить детали сложной конфигурации.

В современных технологиях находят применение новейшие способы разделения металла, в частности, криогенная (операция с использованием сверхзвукового потока жидкого азота).

Раскрой, резка металла – первичные заготовительные стадии обработки металлов и сплавов. Применение прямосторонних заготовок правильной формы, как конечного продукта металлообработки, ограничено. После раскроя механическими способами и газокислородной резкой детали передаются на механическую обработку. А вот используя термические операции лазерной и плазменной резки, можно получить детали, которые являются конечным продуктом. Это будут детали сложной конфигурации с прорезанными отверстиями, высечками и прочими элементами.

Стоимость раскроя

Цена на работы по раскрою, резке металла зависит от ряда факторов:

  • выбора технологии;
  • мощности используемого оборудования;
  • марки, толщины исходного сырья;
  • категории качества заготовок готовой продукции;
  • объема сырьевой партии.

Если предстоит работа с большим объемом сырья, то общая стоимость заказа может быть снижена за счет снижение значения стоимости расчетной единицы (килограмма, погонного метра).

Стоимость резки или раскроя небольших партий, как правило, обговаривается с заказчиком заранее. Она не всегда рассчитывается по формуле «цена расчетной единицы, умноженная на количество», так как любой заказ – большой или малый – требует переналадки оборудования.

Современный промышленный рынок предоставляет массу вариантов резки и раскроя сортового, профильного металла. Но основными критериями для определения исполнителя заказа всегда остаются качество работы, срок изготовления, стоимость выполняемых работ, дополнительные услуге по погрузке, транспортировке.

Виды резки металла. Новые и самые эффектные способы

Любое производство нуждается в специальном инструментарии для резки металла. При этом есть несколько популярных способов резки, каждый из которых имеет свои технологические особенности.

Какой конкретно выбор сделает производитель, зависит от экономической выгоды, желаемого результата, а также от эффективности работ.

Промышленные разновидности резки металла

Это разновидности резки, которые характеризуются большим количеством разрезанных деталей за максимально короткий промежуток времени. Таких способов порезать металлические заготовки известно несколько:

  • лазерным инструментом;
  • плазменная;
  • газовым резаком;
  • гидроабразивная;
  • на резаках с числовым управлением.

Любой из перечисленных методов имеет свои технологические особенности.

Плазменная резка — способ, при котором заготовки или металлы разрезаются струей газа под температурой от 5 до 30 тысяч градусов. При этом электрическим полем разгоняется струя до скорости 15 км/с.

Таким способом легко резать металл листом с толщиной рабочей поверхности 20 см. Получается, что в результате на листе металла образуется разрез без лишних швов. Особым преимуществом является то, что вокруг разреза структура не нагревается и структура металла не разрушается.

Лазерная — также точный вариант резки. Рабочий инструмент в данном случае — луч лазера с точной фокусировкой. Технологически луч плавит металл, он сгорает и испаряется. Если лист металла в толщину больше 1.5 см то зона вокруг разреза требует дополнительного охлаждения. Обычно лазерный метод резки используется для сверхтонких и хрупких материалов.

Важно. Газовая резка — также воздействие на металл температурой. При этом не нужно сложное оборудование, но и точность резки в разы меньше.

Гидроабразивная резка — это механический вид воздействия, который не предполагает термического воздействия. В роли инструмента выступает простая вода, которую смешивают с абразивным порошком. Основным преимуществом является то, что нет структурных изменений , поскольку температура воды не выше 90°С.

Разрезка металла на станке с ЧПУ предполагает технологический процесс, при котором разрезается сразу несколько листов металла. Но в таком случае возможно влияние ржавчины на металл.

Механические варианты резки металла

При влиянии чистой механики используется самый широкий круг инструментов: диски, пилы, прессы, механические резаки. Такие способы воздействия на металл работают не только на промышленном уровне, но и в небольших гаражах на самом бытовом производстве.

Отрезные станки с заменяемыми дисковыми частями (болгарки) используется как стационарное оборудование, так и в качестве мобильного. Резать таким инструментом можно трубы,, разные конструкции, профиля и листы разных сплавов. При этом инструмент отличается высокой точностью выполнения работ, а также скоростью.

Рубка металла — в таком случае есть горизонтальный ножик. Он прижимается к листу металла и разрушает его в зоне контакта. Усиливает работу пресса гидравлика, пневматика или эксцентриковый механизм.

Также резка и рубка профлиста прекрасно выполняется на гильотинах сабельного типа. Рубка на гильотине предполагает ограничения по некоторым конструкциям со сложной структурой.

Ленточнопильный станок считается наиболее универсальным вариантом для резки любых изделий из металла. При таком варианте резки снижаются потери тепла, а сам процесс происходит под любым удобным углом. Минус станка в том, что резка доступна только для определенных размеров металла и деталей.

Газокислородная резка металла

Такой вариант доступен при соблюдении целого ряда условий. В первую очередь можно резать только изделия и конструкции, которые содержат строго определенное количество примесей. Конструкция не должна отличаться высокой теплопроводностью.

Важно. Чтобы температура плавления обрабатываемого материала, была выше, чем температура горения. При этом важно, чтобы разница не была меньше 50°С.

Те оксиды, которые получаются в результате резания металла должны обладать высокими показателями жидкотекучести. В противном случае они будут серьезным препятствием длясгораня основного металла. Процесс станет более дорогим и экономически не выгодным.

Технология резки газом

Данная разновидность резки не является наиболее часто используемой. Она применяется, когда необходимо раскроить сплавы до 6 см толщиной. Вся процедура происходит за счет того тепла, что выделяется при реакции окисления. При этом все продукты сгорания удаляются из области разреза непосредственно потоком газа.

Важно правильно провести подготовку к разрезанию металла, а также технологически правильно соблюдать все нюансы процесса:

  1. Непосредственно линию разреза, а также область на 20 см вокруг следует очистить ото всех посторонних материалов. В противном случае может случить возгорание или даже взрыв. Специалисты советуют зачистить даже ржавчину, поскольку ее наличие сильно замедлит процесс резки.
  2. Непосредственно под линией разреза важно сделать свободное пространство в 10-15 см. Если поток газа будет отражаться на деталь и не сможет свободно выходить, то в результате резки возникнет отрицательная турбулентность и в итоге скорость процесса очень сильно снизится.
  3. Режущий инструмент должен быть расположен строго по вертикали. Отклонение больше чем в 5° значительно снизить точность резки и качество выполняемой работы.
  4. Рабочий, выполняющий резку при помощи газа должен иметь высокий уровень квалификации.

При выполнении всех перечисленных условий, место разреза будет ровным, а скорость и качество выполняемых работ превысит многие другие варианты резки металла.

Виды газовой резки

Есть несколько разновидностей резки металла газом. Каждый из них применяется в своих условиях и имеет несколько технологических особенностей:

  • Пропаном — один из наиболее популярных методов газовой резки. Абсолютно не подойдет для разрезания высокоуглеродистых соединений. Прекрасно используется для резки титановых соединений и низколегированных сплавов.
  • Воздушно-дуговая. В данном варианте помимо кислорода используется электродуга, которая вмонтирована в резак. Удобен при необходимости сделать широкую линию разреза.
  • Кислородно-флюсовая. Название дано за счет флюсового порошка, который подается на обрабатываемую поверхность при резке. Благодаря своим свойствам данный порошок придает материалу большую пластичность и делает его более податливым при обработке резаком. Особенно это помогает при наличии на металле термостойкой оксидной пленки. Поэтому данный вид резки применяется для изделий из меди, чугуна, бронзы, латуни.
  • Копьевая. При такой разновидности резки используется дополнительный расходный материала. Это специальная стальная труба — газовое копье. За счет ее применения повышается эффективность, скорость основного процесса. Используется такой вид резки применяется при обработке больших заготовок и массивных конструкций.

Вне зависимости от конкретного вида газовой резки, технология процесса предполагает, что специалист весь процесс контролирует и проводит сам, вручную, без участия автоматов.

Собственно на рукоятке резака есть три патрубка. По ним подается собственно кислород из баллона, пропан, а также жидкость для охлаждения. Давление кислорода может достигать 12 атмосфер. Выставляется данный показатель на редукторе баллона.

Кислород подается только после того как выполняется зажигание в факеле резака.

Важно. Важным параметром на производстве считается расход газа при газовой резке металла. Этот параметр зависит и от опыта специалиста, который осуществляет данный процесс, и от толщины металла, и от ширины разреза.

Заключение

Резка металла применяется и на производстве, и в бытовых условиях. Каждый из современных способов раскроя металла имеет свои минусы и плюсы. При выборе конкретного метода важно оценить свойства металла, который необходимо разрезать. Немаловажное значение имеет и размер листа, его толщина, а также наличие тугоплавких оксидных пленок на конкретной заготовке.

Все эти нюансы помогают выбрать в конкретном случае тот вид резки металла, который наиболее выгоден производителю и с которым легко получить необходимый результат в кратчайшие сроки.

Ссылка на основную публикацию